Интегралы для чайников: как решать, правила вычисления, объяснение. Основные методы интегрирования Таблица элементарных интегралов

Определение 1

Первообразная $F(x)$ для функции $y=f(x)$ на отрезке $$ - это функция , которая является дифференцируемой в каждой точке этого отрезка и для ее производной выполняется следующее равенство:

Определение 2

Совокупность всех первообразных заданной функции $y=f(x)$, определенной на некотором отрезке, называется неопределенным интегралом от заданной функции $y=f(x)$. Неопределенный интеграл обозначается символом $\int f(x)dx $.

Из таблицы производных и определения 2 получаем таблицу основных интегралов.

Пример 1

Проверить справедливость формулы 7 из таблицы интегралов:

\[\int tgxdx =-\ln |\cos x|+C,\, \, C=const.\]

Продифференцируем правую часть: $-\ln |\cos x|+C$.

\[\left(-\ln |\cos x|+C\right)"=-\frac{1}{\cos x} \cdot (-\sin x)=\frac{\sin x}{\cos x} =tgx\]

Пример 2

Проверить справедливость формулы 8 из таблицы интегралов:

\[\int ctgxdx =\ln |\sin x|+C,\, \, C=const.\]

Продифференцируем правую часть: $\ln |\sin x|+C$.

\[\left(\ln |\sin x|\right)"=\frac{1}{\sin x} \cdot \cos x=ctgx\]

Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 3

Проверить справедливость формулы 11" из таблицы интегралов:

\[\int \frac{dx}{a^{2} +x^{2} } =\frac{1}{a} arctg\frac{x}{a} +C,\, \, C=const.\]

Продифференцируем правую часть: $\frac{1}{a} arctg\frac{x}{a} +C$.

\[\left(\frac{1}{a} arctg\frac{x}{a} +C\right)"=\frac{1}{a} \cdot \frac{1}{1+\left(\frac{x}{a} \right)^{2} } \cdot \frac{1}{a} =\frac{1}{a^{2} } \cdot \frac{a^{2} }{a^{2} +x^{2} } \]

Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 4

Проверить справедливость формулы 12 из таблицы интегралов:

\[\int \frac{dx}{a^{2} -x^{2} } =\frac{1}{2a} \ln \left|\frac{a+x}{a-x} \right|+C,\, \, C=const.\]

Продифференцируем правую часть: $\frac{1}{2a} \ln \left|\frac{a+x}{a-x} \right|+C$.

$\left(\frac{1}{2a} \ln \left|\frac{a+x}{a-x} \right|+C\right)"=\frac{1}{2a} \cdot \frac{1}{\frac{a+x}{a-x} } \cdot \left(\frac{a+x}{a-x} \right)"=\frac{1}{2a} \cdot \frac{a-x}{a+x} \cdot \frac{a-x+a+x}{(a-x)^{2} } =\frac{1}{2a} \cdot \frac{a-x}{a+x} \cdot \frac{2a}{(a-x)^{2} } =\frac{1}{a^{2} -x^{2} } $Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 5

Проверить справедливость формулы 13" из таблицы интегралов:

\[\int \frac{dx}{\sqrt{a^{2} -x^{2} } } =\arcsin \frac{x}{a} +C,\, \, C=const.\]

Продифференцируем правую часть: $\arcsin \frac{x}{a} +C$.

\[\left(\arcsin \frac{x}{a} +C\right)"=\frac{1}{\sqrt{1-\left(\frac{x}{a} \right)^{2} } } \cdot \frac{1}{a} =\frac{a}{\sqrt{a^{2} -x^{2} } } \cdot \frac{1}{a} =\frac{1}{\sqrt{a^{2} -x^{2} } } \]

Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 6

Проверить справедливость формулы 14 из таблицы интегралов:

\[\int \frac{dx}{\sqrt{x^{2} \pm a^{2} } } =\ln |x+\sqrt{x^{2} \pm a^{2} } |+C,\, \, C=const.\]

Продифференцируем правую часть: $\ln |x+\sqrt{x^{2} \pm a^{2} } |+C$.

\[\left(\ln |x+\sqrt{x^{2} \pm a^{2} } |+C\right)"=\frac{1}{x+\sqrt{x^{2} \pm a^{2} } } \cdot \left(x+\sqrt{x^{2} \pm a^{2} } \right)"=\frac{1}{x+\sqrt{x^{2} \pm a^{2} } } \cdot \left(1+\frac{1}{2\sqrt{x^{2} \pm a^{2} } } \cdot 2x\right)=\] \[=\frac{1}{x+\sqrt{x^{2} \pm a^{2} } } \cdot \frac{\sqrt{x^{2} \pm a^{2} } +x}{\sqrt{x^{2} \pm a^{2} } } =\frac{1}{\sqrt{x^{2} \pm a^{2} } } \]

Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 7

Найти интеграл:

\[\int \left(\cos (3x+2)+5x\right) dx.\]

Воспользуемся теоремой об интеграле суммы:

\[\int \left(\cos (3x+2)+5x\right) dx=\int \cos (3x+2)dx +\int 5xdx .\]

Воспользуемся теоремой о вынесении постоянного множителя за знак интеграла:

\[\int \cos (3x+2)dx +\int 5xdx =\int \cos (3x+2)dx +5\int xdx .\]

По таблице интегралов:

\[\int \cos x dx=\sin x+C;\] \[\int xdx =\frac{x^{2} }{2} +C.\]

При вычислении первого интеграла воспользуемся правилом 3:

\[\int \cos (3x+2) dx=\frac{1}{3} \sin (3x+2)+C_{1} .\]

Следовательно,

\[\int \left(\cos (3x+2)+5x\right) dx=\frac{1}{3} \sin (3x+2)+C_{1} +\frac{5x^{2} }{2} +C_{2} =\frac{1}{3} \sin (3x+2)+\frac{5x^{2} }{2} +C,\, \, C=C_{1} +C_{2} \]

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Изучаем понятие « интеграл»

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.


Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


« Интеграл»

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Главные интегралы, которые должен знать каждый студент

Перечисленные интегралы - это базис, основа основ. Данные формулы, безусловно, следует запомнить. При вычислении более сложных интегралов вам придется постоянно ими пользоваться.

Обратите особое внимание на формулы (5), (7), (9), (12), (13), (17) и (19). Не забывайте при интегрировании добавлять к ответу произвольную постоянную С!

Интеграл от константы

∫ A d x = A x + C (1)

Интегрирование степенной функции

В действительности, можно было ограничиться только формулами (5) и (7), но остальные интегралы из этой группы встречаются настолько часто, что стоит уделить им немного внимания.

∫ x d x = x 2 2 + C (2)
∫ x 2 d x = x 3 3 + C (3)
∫ 1 x d x = 2 x + C (4)
∫ 1 x d x = ln | x | + C (5)
∫ 1 x 2 d x = − 1 x + C (6)
∫ x n d x = x n + 1 n + 1 + C (n ≠ − 1) (7)

Интегралы от показательной функции и от гиперболических функций

Разумеется, формулу (8) (пожалуй, самую удобную для запоминания) можно рассматривать как частный случай формулы (9). Формулы (10) и (11) для интегралов от гиперболического синуса и гиперболического косинуса легко выводятся из формулы (8), но лучше просто запомнить эти соотношения.

∫ e x d x = e x + C (8)
∫ a x d x = a x ln a + C (a > 0, a ≠ 1) (9)
∫ s h x d x = c h x + C (10)
∫ c h x d x = s h x + C (11)

Базовые интегралы от тригонометрических функций

Ошибка, которую часто делают студенты: путают знаки в формулах (12) и (13). Запомнив, что производная синуса равна косинусу, многие почему-то считают, что интеграл от функции sinx равен сosx. Это неверно! Интеграл от синуса равен "минус косинусу", а вот интеграл от cosx равен "просто синусу":

∫ sin x d x = − cos x + C (12)
∫ cos x d x = sin x + C (13)
∫ 1 cos 2 x d x = t g x + C (14)
∫ 1 sin 2 x d x = − c t g x + C (15)

Интегралы, сводящиеся к обратным тригонометрическим функциям

Формула (16), приводящая к арктангенсу, естественно, является частным случаем формулы (17) при a=1. Аналогично, (18) - частный случай (19).

∫ 1 1 + x 2 d x = a r c t g x + C = − a r c c t g x + C (16)
∫ 1 x 2 + a 2 = 1 a a r c t g x a + C (a ≠ 0) (17)
∫ 1 1 − x 2 d x = arcsin x + C = − arccos x + C (18)
∫ 1 a 2 − x 2 d x = arcsin x a + C = − arccos x a + C (a > 0) (19)

Более сложные интегралы

Данные формулы тоже желательно запомнить. Они также используются достаточно часто, а их вывод довольно утомителен.

∫ 1 x 2 + a 2 d x = ln | x + x 2 + a 2 | + C (20)
∫ 1 x 2 − a 2 d x = ln | x + x 2 − a 2 | + C (21)
∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 arcsin x a + C (a > 0) (22)
∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 ln | x + x 2 + a 2 | + C (a > 0) (23)
∫ x 2 − a 2 d x = x 2 x 2 − a 2 − a 2 2 ln | x + x 2 − a 2 | + C (a > 0) (24)

Общие правила интегрирования

1) Интеграл от суммы двух функций равен сумме соответствующих интегралов: ∫ (f (x) + g (x)) d x = ∫ f (x) d x + ∫ g (x) d x (25)

2) Интеграл от разности двух функций равен разности соответствующих интегралов: ∫ (f (x) − g (x)) d x = ∫ f (x) d x − ∫ g (x) d x (26)

3) Константу можно выносить за знак интеграла: ∫ C f (x) d x = C ∫ f (x) d x (27)

Легко заметить, что свойство (26) - это просто комбинация свойств (25) и (27).

4) Интеграл от сложной функции, если внутренняя функция является линейной: ∫ f (A x + B) d x = 1 A F (A x + B) + C (A ≠ 0) (28)

Здесь F(x) - первообразная для функции f(x). Обратите внимание: эта формула подходит только для случая, когда внутренняя функция имеет вид Ax + B.

Важно: не существует универсальной формулы для интеграла от произведения двух функций, а также для интеграла от дроби:

∫ f (x) g (x) d x = ? ∫ f (x) g (x) d x = ? (30)

Это не означает, конечно, что дробь или произведение нельзя проинтегрировать. Просто каждый раз, увидев интеграл типа (30), вам придется изобретать способ "борьбы" с ним. В каких-то случаях вам поможет интегрирование по частям, где-то придется сделать замену переменной, а иногда помощь могут оказать даже "школьные" формулы алгебры или тригонометрии.

Простой пример на вычисление неопределенного интеграла

Пример 1. Найти интеграл: ∫ (3 x 2 + 2 sin x − 7 e x + 12) d x

Воспользуемся формулами (25) и (26) (интеграл от суммы или разности функций равен сумме или разности соответствующих интегралов. Получаем: ∫ 3 x 2 d x + ∫ 2 sin x d x − ∫ 7 e x d x + ∫ 12 d x

Вспомним, что константу можно выносить за знак интеграла (формула (27)). Выражение преобразуется к виду

3 ∫ x 2 d x + 2 ∫ sin x d x − 7 ∫ e x d x + 12 ∫ 1 d x

А теперь просто воспользуемся таблицей основных интегралов. Нам потребуется применить формулы (3), (12), (8) и (1). Проинтегрируем степенную функцию, синус, экспоненту и константу 1. Не забудем добавить в конце произвольную постоянную С:

3 x 3 3 − 2 cos x − 7 e x + 12 x + C

После элементарных преобразований получаем окончательный ответ:

X 3 − 2 cos x − 7 e x + 12 x + C

Проверьте себя дифференцированием: возьмите производную от полученной функции и убедитесь, что она равна исходному подинтегральному выражению.

Сводная таблица интегралов

∫ A d x = A x + C
∫ x d x = x 2 2 + C
∫ x 2 d x = x 3 3 + C
∫ 1 x d x = 2 x + C
∫ 1 x d x = ln | x | + C
∫ 1 x 2 d x = − 1 x + C
∫ x n d x = x n + 1 n + 1 + C (n ≠ − 1)
∫ e x d x = e x + C
∫ a x d x = a x ln a + C (a > 0, a ≠ 1)
∫ s h x d x = c h x + C
∫ c h x d x = s h x + C
∫ sin x d x = − cos x + C
∫ cos x d x = sin x + C
∫ 1 cos 2 x d x = t g x + C
∫ 1 sin 2 x d x = − c t g x + C
∫ 1 1 + x 2 d x = a r c t g x + C = − a r c c t g x + C
∫ 1 x 2 + a 2 = 1 a a r c t g x a + C (a ≠ 0)
∫ 1 1 − x 2 d x = arcsin x + C = − arccos x + C
∫ 1 a 2 − x 2 d x = arcsin x a + C = − arccos x a + C (a > 0)
∫ 1 x 2 + a 2 d x = ln | x + x 2 + a 2 | + C
∫ 1 x 2 − a 2 d x = ln | x + x 2 − a 2 | + C
∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 arcsin x a + C (a > 0)
∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 ln | x + x 2 + a 2 | + C (a > 0)
∫ x 2 − a 2 d x = x 2 x 2 − a 2 − a 2 2 ln | x + x 2 − a 2 | + C (a > 0)


Скачайте таблицу интегралов (часть II) по этой ссылке

Если Вы учитесь в ВУЗе, если у Вас возникли сложности с высшей математикой (математический анализ, линейная алгебра, теория вероятностей, статистика), если Вам нужны услуги квалифицированного преподавателя, зайдите на страничку репетитора по высшей математике . Будем решать Ваши проблемы вместе!

Возможно, вас заинтересуют также

Таблица первообразных ("интегралов"). Таблица интегралов. Табличные неопределенные интегралы. (Простейшие интегралы и интегралы с параметром). Формулы интегрирования по частям. Формула Ньютона-Лейбница.

Таблица первообразных ("интегралов"). Табличные неопределенные интегралы. (Простейшие интегралы и интегралы с параметром).

Интеграл степенной функции.

Интеграл степенной функции.

Интеграл, сводящийся к интегралу степенной функции, если загнать х под знак диффференциала.

Интеграл экспоненты, где a-постоянное число.

Интеграл сложной экспоненциальной функции.

Интеграл экспоненциальной функции.

Интеграл, равняющийся натуральному логорифму.

Интеграл: "Длинный логарифм".

Интеграл: "Длинный логарифм".

Интеграл: "Высокий логарифм".

Интеграл, где х в числителе заводится под знак дифференциала (константу под знаком можно как прибавлять, так и отнимать), в итоге схож с интегралом, равным натуральному логорифму.

Интеграл: "Высокий логарифм".

Интеграл косинуса.

Интеграл синуса.

Интеграл, равный тангенсу.

Интеграл, равный котангенсу.

Интеграл, равный как арксинусу, так и арккосинусу

Интеграл, равный как арксинусу, так и арккосинусу.

Интеграл, равный как арктангенсу, так и арккотангенсу.

Интеграл равный косекансу.

Интеграл, равный секансу.

Интеграл, равный арксекансу.

Интеграл, равный арккосекансу.

Интеграл, равный арксекансу.

Интеграл, равный арксекансу.

Интеграл, равный гиперболическому синусу.

Интеграл, равный гиперболическому косинусу.

Интеграл, равный гиперболическому синусу, где sinhx - гиперболический синус в ангийской версии.

Интеграл, равный гиперболическому косинусу, где sinhx - гиперболический синус в ангийской версии.

Интеграл, равный гиперболическому тангенсу.

Интеграл, равный гиперболическому котангенсу.

Интеграл, равный гиперболическому секансу.

Интеграл, равный гиперболическому косекансу.

Формулы интегрирования по частям. Правила интегрирования.

Формулы интегрирования по частям. Формула Ньютона-Лейбница.Правила интегрирования.

Интегрирование произведения (функции) на постоянную:

Интегрирование суммы функций:

неопределенные интегралы:

Формула интегрирования по частям

определенные интегралы:

Формула Ньютона-Лейбница

определенные интегралы:

Где F(a),F(b)-значения первообразных в точках b и a соответственно.

Таблица производных. Табличные производные. Производная произведения. Производная частного. Производная сложной функции.

Если x - независимая переменная, то:

Таблица производных. Табличные производные."таблица производный"-да, к сожалению, именно так их и ищут в интернете

Производная степенной функции

Производная экспоненты

Производная сложной экспоненциальной функции

Производная экспоненциальной функции

Производная логарифмической функции

Производная натурального логарифма

Производная натурального логарифма функции

Производная синуса

Производная косинуса

Производная косеканса

Производная секанса

Производная арксинуса

Производная арккосинуса

Производная арксинуса

Производная арккосинуса

Производная тангенса

Производная котангенса

Производная арктангенса

Производная арккотангенса

Производная арктангенса

Производная арккотангенса

Производная арксеканса

Производная арккосеканса

Производная арксеканса

Производная арккосеканса

Производная гиперболического синуса

Производная гиперболического синуса в английской версии

Производная гиперболического косинуса

Производная гиперболического косинуса в английской версии

Производная гиперболического тангенса

Производная гиперболического котангенса

Производная гиперболического секанса

Производная гиперболического косеканса

Правила дифференцирования. Производная произведения. Производная частного. Производная сложной функции.

Производная произведения (функции) на постоянную:

Производная суммы (функций):

Производная произведения (функций):

Производная частного (функций):

Производная сложной функции:

Свойства логарифмов. Основные формулы логарифмов. Десятичные (lg) и натуральные логарифмы (ln).

Основное логарифмическое тождество

Покажем как можно любую функцию вида a b сделать экспоненциальной. Поскольку функция вида е х называется экспоненциальной, то

Любая функция вида a b может быть представлена в виде степени десяти

Натуральный логарифм ln (логарифм по основанию е = 2,718281828459045…) ln(e)=1; ln(1)=0

Ряд Тейлора. Разложение функции в ряд Тейлора.

Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=1:

При использовании рядов, называемых рядами Тейлора, смешанные функции, содержащие, скажем, алгебраические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.

Ряд Тейлора в окрестности точки a имеет виды:

1) , где f(x) - функция, имеющая при х=а производные всех порядков. R n - остаточный член в ряде Тейлора определяется выражением

2)

k-тый коэффициент (при х k) ряда определяется формулой

3) Частным случаем ряда Тейлора является ряд Маклорена (=Макларена) (разложение происходит вокруг точки а=0)

при a=0

члены ряда определяются по формуле

Условия применения рядов Тейлора.

1. Для того, чтобы функция f(x) могла быть разложена в ряд Тейлора на интервале (-R;R) необходимо и достаточно, чтобы остаточный член в формуле Тейлора (Маклорена (=Макларена)) для данной функции стремился к нулю при k→∞ на указанном интервале (-R;R).

2. Необходимо чтобы существовали производные для данной функции в точке, в окрестности которой мы собираемся строить ряд Тейлора.

Свойства рядов Тейлора.

    Если f есть аналитическая функция, то ее ряд Тейлора в любой точке а области определения f сходится к f в некоторой окрестности а.

    Существуют бесконечно дифференцируемые функции, ряд Тейлора которых сходится, но при этом отличается от функции в любой окрестности а. Например:

Ряды Тейлора применяются при аппроксимации (приближение - научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми) функции многочленами. В частности, линеаризация ((от linearis - линейный), один из методов приближённого представления замкнутых нелинейных систем, при котором исследование нелинейной системы заменяется анализом линейной системы, в некотором смысле эквивалентной исходной.) уравнений происходит путём разложения в ряд Тейлора и отсечения всех членов выше первого порядка.

Таким образом, практически любую функцию можно представить в виде полинома с заданной точностью.

Примеры некоторых распространенных разложений степенных функций в ряды Маклорена (=Макларена,Тейлора в окрестностях точки 0) и Тейлора в окрестностях точки 1. Первые члены разложений основных функций в ряды Тейлора и Макларена.

Примеры некоторых распространенных разложений степенных функций в ряды Маклорена(=Макларена, Тейлора в окрестностях точки 0)

Примеры некоторых распространенных разложений в ряды Тейлора в окрестностях точки 1

Непосредственное интегрирование с использованием таблицы первообразных (таблицы неопределенных интегралов)

Таблица первообразных

Найти первообразную по известному дифференциалу функции мы можем в том случае, если используем свойства неопределенного интеграла. Из таблицы основных элементарных функций, используя равенства ∫ d F (x) = ∫ F " (x) d x = ∫ f (x) d x = F (x) + C и ∫ k · f (x) d x = k · ∫ f (x) d x можно составить таблицу первообразных.

Запишем таблицу производных в виде дифференциалов.

Постоянная y = C

C " = 0

Степенная функция y = x p .

(x p) " = p · x p - 1

Постоянная y = C

d (C) = 0 · d x

Степенная фунция y = x p .

d (x p) = p · x p - 1 · d x

(a x) " = a x · ln a

Показательная функция y = a x .

d (a x) = a x · ln α · d x

В частности при a = e имеем y = e x

d (e x) = e x · d x

log a x " = 1 x · ln a

Логарифмические функия y = log a x .

d (log a x) = d x x · ln a

В частности при a = e имеем y = ln x

d (ln x) = d x x

Тригонометрические функции.

sin x " = cos x (cos x) " = - sin x (t g x) " = 1 c o s 2 x (c t g x) " = - 1 sin 2 x

Тригонометрические функции.

d sin x = cos x · d x d (cos x) = - sin x · d x d (t g x) = d x c o s 2 x d (c t g x) = - d x sin 2 x

a r c sin x " = 1 1 - x 2 a r c cos x " = - 1 1 - x 2 a r c t g x " = 1 1 + x 2 a r c c t g x " = - 1 1 + x 2

Обратные тригонометрические фунции.

d a r c sin x = d x 1 - x 2 d a r c cos x = - d x 1 - x 2 d a r c t g x = d x 1 + x 2 d a r c c t g x = - d x 1 + x 2

Проиллюстрируем описанное выше примером. Найдем неопределенный интеграл степенной функции f (x) = x p .

Согласно таблице дифференциалов d (x p) = p · x p - 1 · d x . По свойствам неопределенного интеграла имеем ∫ d (x p) = ∫ p · x p - 1 · d x = p · ∫ x p - 1 · d x = x p + C . Следовательно, ∫ x p - 1 · d x = x p p + C p , p ≠ 0 .Второй вариант записи выглядит следующим образом: ∫ x p · d x = x p + 1 p + 1 + C p + 1 = x p + 1 p + 1 + C 1 , p ≠ - 1 .

Примем равным - 1 , найдем множество первообразных степенной функции f (x) = x p: ∫ x p · d x = ∫ x - 1 · d x = ∫ d x x .

Теперь нам понадобится таблица дифференциалов для натурального логарифма d (ln x) = d x x , x > 0 , следовательно ∫ d (ln x) = ∫ d x x = ln x . Поэтому ∫ d x x = ln x , x > 0 .

Таблица первообразных (неопределенных интегралов)

В левом столбце таблицы размещены формулы, которые носят название основных первообразных. В правом столбце формулы не являются основными, но могут использоваться при нахождении неопределенных интегралов. Их можно проверить дифференцированием.

Непосредственное интегрирование

Для выполнения непосредственного интегрирования мы будем использовать таблицы первообразных, правила интегрирования ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C , а также свойства неопределенных интегралов ∫ k · f (x) d x = k · ∫ f (x) d x ∫ (f (x) ± g (x)) d x = ∫ f (x) d x ± ∫ g (x) d x

Таблицу основных интегралов и свойства интегралов можно использовать только после легкого преобразования подынтегрального выражения.

Пример 1

Найдем интеграл ∫ 3 sin x 2 + cos x 2 2 d x

Решение

Выносим из-под знака интеграла коэффициент 3:

∫ 3 sin x 2 + cos x 2 2 d x = 3 ∫ sin x 2 + cos x 2 2 d x

По формулам тригонометрии преобразуем подынтегральную функцию:

3 ∫ sin x 2 + cos x 2 2 d x = 3 ∫ sin x 2 2 + 2 sin x 2 cos x 2 + cos x 2 2 d x = = 3 ∫ 1 + 2 sin x 2 cos x 2 d x = 3 ∫ 1 + sin x d x

Так как интеграл суммы равен сумме интегралов, то
3 ∫ 1 + sin x d x = 3 ∫ 1 · d x + ∫ sin x d x

Используем данные из таблицы первообразных: 3 ∫ 1 · d x + ∫ sin x d x = 3 (1 · x + C 1 - cos x + C 2) = = п у с т ь 3 С 1 + С 2 = С = 3 x - 3 cos x + C

Ответ: ∫ 3 sin x 2 + cos x 2 2 d x = 3 x - 3 cos x + C .

Пример 2

Необходимо найти множество первообразных функции f (x) = 2 3 4 x - 7 .

Решение

Используем таблицу первообразных для показательной функции: ∫ a x · d x = a x ln a + C . Это значит, что ∫ 2 x · d x = 2 x ln 2 + C .

Используем правило интегрирования ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C .

Получаем ∫ 2 3 4 x - 7 · d x = 1 3 4 · 2 3 4 x - 7 ln 2 + C = 4 3 · 2 3 4 x - 7 ln 2 + C .

Ответ: f (x) = 2 3 4 x - 7 = 4 3 · 2 3 4 x - 7 ln 2 + C

Используя таблицу первообразных, свойства и правило интегрирования, мы можем найти массу неопределенных интегралов. Это возможно в тех случаях, когда можно преобразовать подынтегральную функцию.

Для нахождения интеграла от функции логарифма, функции тангенса и котангенса и ряда других применяются специальные методы, которые мы рассмотрим в разделе «Основные методы интегрирования».

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Случайные статьи

Вверх