Logaritam na osnovu 0. Prirodni logaritam, funkcija ln x. Izračunavanje logaritama po definiciji

Kao što znate, kada se množe izrazi sa stepenom, njihovi eksponenti se uvijek sabiraju (a b *a c = a b+c). Ovaj matematički zakon je izveo Arhimed, a kasnije, u 8. veku, matematičar Virasen je napravio tabelu celobrojnih eksponenata. Upravo su oni poslužili za dalje otkrivanje logaritama. Primjeri korištenja ove funkcije mogu se naći gotovo svugdje gdje trebate pojednostaviti glomazno množenje jednostavnim sabiranjem. Ako odvojite 10 minuta čitajući ovaj članak, objasnit ćemo vam što su logaritmi i kako s njima raditi. Jednostavnim i pristupačnim jezikom.

Definicija u matematici

Logaritam je izraz sljedećeg oblika: log a b=c, to jest, logaritam bilo kojeg nenegativnog broja (tj. bilo kojeg pozitivnog) “b” na njegovu bazu “a” smatra se stepenom “c ” na koju se baza “a” mora podići da bi se na kraju dobila vrijednost “b”. Analizirajmo logaritam na primjerima, recimo da postoji izraz log 2 8. Kako pronaći odgovor? Vrlo je jednostavno, potrebno je pronaći takvu snagu da od 2 do tražene snage dobijete 8. Nakon nekih proračuna u glavi, dobijamo broj 3! I to je tačno, jer 2 na stepen od 3 daje odgovor kao 8.

Vrste logaritama

Za mnoge učenike i studente ova se tema čini komplikovanom i nerazumljivom, ali zapravo logaritmi nisu toliko strašni, najvažnije je razumjeti njihovo općenito značenje i zapamtiti njihova svojstva i neka pravila. Postoje tri odvojene vrste logaritamskih izraza:

  1. Prirodni logaritam ln a, gdje je baza Ojlerov broj (e = 2,7).
  2. Decimala a, gdje je osnova 10.
  3. Logaritam bilo kojeg broja b na osnovu a>1.

Svaki od njih se rješava na standardni način, uključujući pojednostavljenje, redukciju i naknadno svođenje na jedan logaritam korištenjem logaritamskih teorema. Da biste dobili ispravne vrijednosti logaritama, trebali biste zapamtiti njihova svojstva i redoslijed radnji prilikom njihovog rješavanja.

Pravila i neka ograničenja

U matematici postoji nekoliko pravila-ograničenja koja su prihvaćena kao aksiom, odnosno nisu predmet rasprave i predstavljaju istinu. Na primjer, nemoguće je podijeliti brojeve sa nulom, a također je nemoguće izdvojiti paran korijen negativnih brojeva. Logaritmi također imaju svoja pravila, slijedeći koja možete lako naučiti raditi čak i sa dugim i prostranim logaritamskim izrazima:

  • Osnova “a” uvijek mora biti veća od nule, a ne jednaka 1, inače će izraz izgubiti svoje značenje, jer su “1” i “0” u bilo kom stepenu uvijek jednaki njihovim vrijednostima;
  • ako je a > 0, onda a b > 0, ispada da “c” takođe mora biti veće od nule.

Kako riješiti logaritme?

Na primjer, daje se zadatak pronaći odgovor na jednadžbu 10 x = 100. Ovo je vrlo lako, potrebno je odabrati stepen podizanjem broja deset na koji dobijamo 100. Ovo je, naravno, 10 2 = 100.

Sada predstavimo ovaj izraz u logaritamskom obliku. Dobijamo log 10 100 = 2. Prilikom rješavanja logaritma, sve radnje se praktično konvergiraju da bi se pronašla potencija na koju je potrebno unijeti bazu logaritma da bi se dobio dati broj.

Da biste precizno odredili vrijednost nepoznatog stepena, morate naučiti kako raditi s tablicom stupnjeva. izgleda ovako:

Kao što vidite, neki eksponenti se mogu pogoditi intuitivno ako imate tehnički um i poznavanje tablice množenja. Međutim, za veće vrijednosti trebat će vam stol za napajanje. Mogu ga koristiti čak i oni koji ne znaju ništa o složenim matematičkim temama. Lijeva kolona sadrži brojeve (osnova a), gornji red brojeva je vrijednost stepena c na koji je broj a podignut. Na raskrsnici ćelije sadrže brojčane vrijednosti koje su odgovor (a c =b). Uzmimo, na primjer, prvu ćeliju sa brojem 10 i kvadriramo je, dobićemo vrijednost 100, koja je naznačena na sjecištu naše dvije ćelije. Sve je tako jednostavno i lako da će i najistinskiji humanista razumjeti!

Jednačine i nejednačine

Ispada da je pod određenim uslovima eksponent logaritam. Prema tome, bilo koji matematički numerički izrazi mogu se zapisati kao logaritamska jednakost. Na primjer, 3 4 =81 se može zapisati kao logaritam sa 3 osnove od 81 jednako četiri (log 3 81 = 4). Za negativne potencije pravila su ista: 2 -5 = 1/32 zapišemo to kao logaritam, dobijemo log 2 (1/32) = -5. Jedna od najfascinantnijih sekcija matematike je tema "logaritma". U nastavku ćemo pogledati primjere i rješenja jednadžbi, odmah nakon proučavanja njihovih svojstava. Pogledajmo sada kako izgledaju nejednakosti i kako ih razlikovati od jednačina.

Dat je sljedeći izraz: log 2 (x-1) > 3 - to je logaritamska nejednakost, jer je nepoznata vrijednost “x” ispod logaritamskog predznaka. I također se u izrazu upoređuju dvije veličine: logaritam željenog broja na osnovu dva je veći od broja tri.

Najvažnija razlika između logaritamskih jednadžbi i nejednačina je u tome što jednadžbe sa logaritmima (na primjer, logaritam 2 x = √9) podrazumijevaju jednu ili više specifičnih brojčanih vrijednosti u odgovoru, dok se pri rješavanju nejednadžbe uzimaju i raspon prihvatljivih vrijednosti ​​i tačke se određuju kršenjem ove funkcije. Kao posljedica toga, odgovor nije jednostavan skup pojedinačnih brojeva, kao u odgovoru na jednadžbu, već kontinuirani niz ili skup brojeva.

Osnovne teoreme o logaritmima

Prilikom rješavanja primitivnih zadataka pronalaženja vrijednosti logaritma, njegova svojstva možda neće biti poznata. Međutim, kada su u pitanju logaritamske jednačine ili nejednačine, prije svega, potrebno je jasno razumjeti i primijeniti u praksi sva osnovna svojstva logaritama. Kasnije ćemo pogledati primjere jednadžbi;

  1. Glavni identitet izgleda ovako: a logaB =B. Primjenjuje se samo kada je a veće od 0, nije jednako jedan, a B je veće od nule.
  2. Logaritam proizvoda se može predstaviti sljedećom formulom: log d (s 1 * s 2) = log d s 1 + log d s 2. U ovom slučaju, obavezan uslov je: d, s 1 i s 2 > 0; a≠1. Možete dati dokaz za ovu logaritamsku formulu, sa primjerima i rješenjem. Neka log a s 1 = f 1 i log a s 2 = f 2, tada a f1 = s 1, a f2 = s 2. Dobijamo da je s 1 * s 2 = a f1 *a f2 = a f1+f2 (osobine stepeni ), a zatim po definiciji: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, što je trebalo dokazati.
  3. Logaritam količnika izgleda ovako: log a (s 1/s 2) = log a s 1 - log a s 2.
  4. Teorema u obliku formule ima sljedeći oblik: log a q b n = n/q log a b.

Ova formula se naziva “svojstvo stepena logaritma”. Podsjeća na svojstva običnih stupnjeva, i nije iznenađujuće, jer se sva matematika zasniva na prirodnim postulatima. Pogledajmo dokaz.

Neka log a b = t, ispada da je a t = b. Ako oba dijela podignemo na stepen m: a tn = b n ;

ali pošto je a tn = (a q) nt/q = b n, dakle log a q b n = (n*t)/t, onda log a q b n = n/q log a b. Teorema je dokazana.

Primjeri problema i nejednakosti

Najčešći tipovi zadataka o logaritmima su primjeri jednačina i nejednačina. Nalaze se u gotovo svim knjigama zadataka, a također su obavezan dio ispita iz matematike. Da biste ušli na fakultet ili položili prijemne ispite iz matematike, morate znati kako pravilno riješiti takve zadatke.

Nažalost, ne postoji jedinstven plan ili shema za rješavanje i određivanje nepoznate vrijednosti logaritma, ali se određena pravila mogu primijeniti na svaku matematičku nejednačinu ili logaritamsku jednačinu. Prije svega, trebali biste saznati može li se izraz pojednostaviti ili svesti na opći oblik. Duge logaritamske izraze možete pojednostaviti ako pravilno koristite njihova svojstva. Hajde da ih brzo upoznamo.

Prilikom rješavanja logaritamskih jednadžbi moramo odrediti koji tip logaritma imamo: primjer izraza može sadržavati prirodni logaritam ili decimalni.

Evo primjera ln100, ln1026. Njihovo rješenje se svodi na činjenicu da treba odrediti snagu kojoj će baza 10 biti jednaka 100 i 1026, respektivno. Da biste riješili prirodne logaritme, morate primijeniti logaritamske identitete ili njihova svojstva. Pogledajmo primjere rješavanja logaritamskih problema različitih tipova.

Kako koristiti logaritamske formule: s primjerima i rješenjima

Dakle, pogledajmo primjere korištenja osnovnih teorema o logaritmima.

  1. Svojstvo logaritma proizvoda može se koristiti u zadacima gdje je potrebno rastaviti veliku vrijednost broja b na jednostavnije faktore. Na primjer, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Odgovor je 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - kao što vidite, koristeći četvrto svojstvo stepena logaritma, uspjeli smo riješiti naizgled složen i nerješiv izraz. Vi samo trebate faktorisati bazu, a zatim izvući vrijednosti eksponenta iz predznaka logaritma.

Zadaci sa Jedinstvenog državnog ispita

Logaritmi se često nalaze na prijemnim ispitima, posebno mnogi logaritamski problemi na Jedinstvenom državnom ispitu (državni ispit za sve maturante). Obično su ovi zadaci prisutni ne samo u dijelu A (najlakši dio ispita), već i u dijelu C (najsloženiji i najobimniji zadaci). Ispit zahtijeva tačno i savršeno poznavanje teme „Prirodni logaritmi“.

Primjeri i rješenja problema preuzeti su iz službenih verzija Jedinstvenog državnog ispita. Pogledajmo kako se takvi zadaci rješavaju.

Dat log 2 (2x-1) = 4. Rješenje:
prepišimo izraz, pojednostavljujući ga malo log 2 (2x-1) = 2 2, po definiciji logaritma dobijamo da je 2x-1 = 2 4, dakle 2x = 17; x = 8,5.

  • Najbolje je sve logaritme svesti na istu bazu kako rješenje ne bi bilo glomazno i ​​zbunjujuće.
  • Svi izrazi pod predznakom logaritma su označeni kao pozitivni, stoga, kada se eksponent izraza koji je pod predznakom logaritma i kao njegova baza izvadi kao množitelj, izraz koji ostaje pod logaritmom mora biti pozitivan.

Jedan od elemenata primitivne algebre nivoa je logaritam. Ime dolazi iz grčkog jezika od riječi "broj" ili "moć" i označava snagu na koju se broj u bazi mora podići da bi se pronašao konačni broj.

Vrste logaritama

  • log a b – logaritam broja b prema bazi a (a > 0, a ≠ 1, b > 0);
  • log b – decimalni logaritam (logaritam na osnovu 10, a = 10);
  • ln b – prirodni logaritam (logaritam prema bazi e, a = e).

Kako riješiti logaritme?

Logaritam od b prema bazi a je eksponent koji zahtijeva da se b podigne na bazu a. Dobijeni rezultat se izgovara ovako: "logaritam od b prema bazi a." Rješenje logaritamskih problema je da morate odrediti datu snagu u brojevima iz navedenih brojeva. Postoje neka osnovna pravila za određivanje ili rješavanje logaritma, kao i za pretvaranje same notacije. Koristeći ih, rješavaju se logaritamske jednadžbe, pronalaze derivati, rješavaju integrali i izvode mnoge druge operacije. U osnovi, rješenje samog logaritma je njegova pojednostavljena notacija. Ispod su osnovne formule i svojstva:

Za bilo koji a ; a > 0; a ≠ 1 i za bilo koji x ; y > 0.

  • a log a b = b – osnovni logaritamski identitet
  • log a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x , za k ≠ 0
  • log a x = log a c x c
  • log a x = log b x/ log b a – formula za prelazak na novu bazu
  • log a x = 1/log x a


Kako riješiti logaritme - upute korak po korak za rješavanje

  • Prvo zapišite traženu jednačinu.

Napomena: ako je osnovni logaritam 10, unos se skraćuje, što rezultira decimalnim logaritmom. Ako postoji prirodan broj e, onda ga zapisujemo, svodeći ga na prirodni logaritam. To znači da je rezultat svih logaritama snaga na koju se podiže osnovni broj da bi se dobio broj b.


Direktno, rješenje leži u izračunavanju ovog stepena. Prije rješavanja izraza logaritmom, on se mora pojednostaviti prema pravilu, odnosno korištenjem formula. Glavne identitete možete pronaći ako se malo vratite u članak.

Kada sabirate i oduzimate logaritme sa dva različita broja, ali sa istim osnovama, zamijenite jednim logaritmom sa umnoškom ili podjelom brojeva b i c, respektivno. U tom slučaju možete primijeniti formulu za prelazak na drugu bazu (vidi gore).

Ako koristite izraze za pojednostavljenje logaritma, postoje neka ograničenja koja treba uzeti u obzir. A to je: osnova logaritma a je samo pozitivan broj, ali ne i jedan. Broj b, kao i a, mora biti veći od nule.

Postoje slučajevi u kojima, pojednostavljivanjem izraza, nećete moći numerički izračunati logaritam. Dešava se da takav izraz nema smisla, jer su mnoge potencije iracionalni brojevi. Pod ovim uslovom ostavite stepen broja kao logaritam.



Kako se društvo razvijalo i proizvodnja postajala složenija, razvijala se i matematika. Kretanje od jednostavnog ka složenom. Od običnog računovodstva metodom sabiranja i oduzimanja, uz njihovo višestruko ponavljanje, došli smo do pojma množenja i dijeljenja. Smanjenje ponovljene operacije množenja postalo je koncept eksponencijalnosti. Prve tabele zavisnosti brojeva od baze i broja eksponencijalnosti sastavio je još u 8. veku indijski matematičar Varasena. Od njih možete računati vrijeme pojavljivanja logaritama.

Istorijska skica

Preporod Evrope u 16. veku takođe je podstakao razvoj mehanike. T zahtevala veliku količinu proračuna vezano za množenje i dijeljenje višecifrenih brojeva. Drevni stolovi su bili od velike pomoći. Omogućili su zamjenu složenih operacija jednostavnijim - zbrajanjem i oduzimanjem. Veliki iskorak bio je rad matematičara Michaela Stiefela, objavljen 1544. godine, u kojem je realizovao ideju mnogih matematičara. To je omogućilo korištenje tablica ne samo za stepene u obliku prostih brojeva, već i za proizvoljne racionalne.

Godine 1614, Škot Džon Napier, razvijajući ove ideje, prvi je uveo novi termin „logaritam broja“. Sastavljene su nove kompleksne tablice za izračunavanje logaritama sinusa i kosinusa, kao i tangenta. To je znatno smanjilo rad astronoma.

Počele su se pojavljivati ​​nove tablice koje su naučnici uspješno koristili tri stoljeća. Prošlo je dosta vremena dok nova operacija u algebri nije dobila svoj gotov oblik. Data je definicija logaritma i proučavana su njegova svojstva.

Tek u 20. veku, sa pojavom kalkulatora i kompjutera, čovečanstvo je napustilo drevne tablice koje su uspešno radile tokom 13. veka.

Danas logaritam od b na bazi a nazivamo brojem x koji je snaga a da bi se stvorilo b. Ovo je zapisano kao formula: x = log a(b).

Na primjer, log 3(9) bi bio jednak 2. Ovo je očigledno ako slijedite definiciju. Ako podignemo 3 na stepen 2, dobićemo 9.

Dakle, formulirana definicija postavlja samo jedno ograničenje: brojevi a i b moraju biti realni.

Vrste logaritama

Klasična definicija se zove realni logaritam i zapravo je rješenje jednadžbe a x = b. Opcija a = 1 je granična i nije od interesa. Pažnja: 1 na bilo koji stepen je jednako 1.

Realna vrijednost logaritma definiran samo kada su baza i argument veći od 0, a baza ne smije biti jednaka 1.

Posebno mjesto u oblasti matematike igrajte logaritme, koji će se imenovati ovisno o veličini njihove baze:

Pravila i ograničenja

Osnovno svojstvo logaritama je pravilo: logaritam proizvoda jednak je logaritamskom zbroju. log abp = log a(b) + log a(p).

Kao varijanta ove izjave to će biti: log c(b/p) = log c(b) - log c(p), kvocijentna funkcija je jednaka razlici funkcija.

Iz prethodna dva pravila lako je vidjeti da je: log a(b p) = p * log a(b).

Ostala svojstva uključuju:

Komentar. Nema potrebe praviti uobičajenu grešku - logaritam zbira nije jednak zbiru logaritama.

Tokom mnogo stoljeća, operacija pronalaženja logaritma bila je prilično dugotrajan zadatak. Matematičari su koristili dobro poznatu formulu logaritamske teorije polinomske ekspanzije:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), gdje je n prirodni broj veći od 1, koji određuje tačnost izračunavanja.

Logaritmi s drugim bazama izračunati su korištenjem teoreme o prijelazu s jedne baze na drugu i svojstva logaritma proizvoda.

Budući da je ova metoda vrlo radno intenzivna i prilikom rješavanja praktičnih problema teške za implementaciju, koristili smo unaprijed sastavljene tabele logaritama, što je značajno ubrzalo sav rad.

U nekim slučajevima korišteni su posebno sastavljeni grafikoni logaritama, koji su davali manju preciznost, ali značajno ubrzavali traženje željene vrijednosti. Kriva funkcije y = log a(x), konstruisana preko nekoliko tačaka, omogućava vam da koristite regularni lenjir da pronađete vrednost funkcije u bilo kojoj drugoj tački. Dugo vremena inženjeri su za ove svrhe koristili takozvani grafografski papir.

U 17. veku pojavljuju se prvi pomoćni analogni računarski uslovi, koji do 19. veka dobijaju potpuni oblik. Najuspješniji uređaj zvao se klizač. Unatoč jednostavnosti uređaja, njegov izgled značajno je ubrzao proces svih inženjerskih proračuna, a to je teško precijeniti. Trenutno je malo ljudi upoznato s ovim uređajem.

Pojava kalkulatora i kompjutera učinila je besmislenom upotrebu bilo kojih drugih uređaja.

Jednačine i nejednačine

Za rješavanje različitih jednadžbi i nejednačina pomoću logaritama koriste se sljedeće formule:

  • Prijelaz s jedne baze na drugu: log a(b) = log c(b) / log c(a);
  • Kao posljedica prethodne opcije: log a(b) = 1 / log b(a).

Za rješavanje nejednakosti korisno je znati:

  • Vrijednost logaritma će biti pozitivna samo ako su baza i argument veći ili manji od jedan; ako je barem jedan uvjet prekršen, vrijednost logaritma će biti negativna.
  • Ako je funkcija logaritma primijenjena na desnu i lijevu stranu nejednakosti, a baza logaritma je veća od jedan, onda je predznak nejednakosti sačuvan; inače se menja.

Problemi sa uzorcima

Razmotrimo nekoliko opcija za korištenje logaritama i njihovih svojstava. Primjeri sa rješavanjem jednačina:

Razmotrimo opciju stavljanja logaritma u stepen:

  • Zadatak 3. Izračunajte 25^log 5(3). Rešenje: u uslovima problema, unos je sličan sledećem (5^2)^log5(3) ili 5^(2 * log 5(3)). Zapišimo to drugačije: 5^log 5(3*2), ili kvadrat broja kao argument funkcije može se napisati kao kvadrat same funkcije (5^log 5(3))^2. Koristeći svojstva logaritma, ovaj izraz je jednak 3^2. Odgovor: kao rezultat izračuna dobijamo 9.

Praktična upotreba

Kao čisto matematički alat, čini se da je daleko od stvarnog života da je logaritam odjednom dobio veliku važnost za opisivanje objekata u stvarnom svijetu. Teško je naći nauku u kojoj se ne koristi. Ovo se u potpunosti odnosi ne samo na prirodna, već i na humanitarna polja znanja.

Logaritamske zavisnosti

Evo nekoliko primjera numeričkih ovisnosti:

Mehanika i fizika

Istorijski gledano, mehanika i fizika su se oduvijek razvijale korištenjem matematičkih istraživačkih metoda i istovremeno su služile kao poticaj za razvoj matematike, uključujući i logaritme. Teorija većine zakona fizike napisana je jezikom matematike. Navedimo samo dva primjera opisivanja fizičkih zakona pomoću logaritma.

Problem izračunavanja tako složene veličine kao što je brzina rakete može se riješiti korištenjem formule Tsiolkovsky, koja je postavila temelje za teoriju istraživanja svemira:

V = I * ln (M1/M2), gdje je

  • V je konačna brzina aviona.
  • I – specifični impuls motora.
  • M 1 – početna masa rakete.
  • M 2 – konačna masa.

Još jedan važan primjer- ovo se koristi u formuli drugog velikog naučnika Maxa Plancka, koja služi za procjenu stanja ravnoteže u termodinamici.

S = k * ln (Ω), gdje je

  • S – termodinamičko svojstvo.
  • k – Boltzmannova konstanta.
  • Ω je statistička težina različitih stanja.

hemija

Manje očigledna je upotreba formula u hemiji koje sadrže omjer logaritama. Navedimo samo dva primjera:

  • Nernstova jednadžba, stanje redoks potencijala medija u odnosu na aktivnost supstanci i konstantu ravnoteže.
  • Proračun takvih konstanti kao što su indeks autolize i kiselost otopine također se ne može obaviti bez naše funkcije.

Psihologija i biologija

I uopće nije jasno kakve veze psihologija ima s tim. Ispostavilo se da je jačina osjeta dobro opisana ovom funkcijom kao inverzni omjer vrijednosti intenziteta stimulusa prema nižoj vrijednosti intenziteta.

Nakon gore navedenih primjera, više ne čudi što se tema logaritma široko koristi u biologiji. O biološkim oblicima koji odgovaraju logaritamskim spiralama mogli bi se napisati čitavi tomovi.

Ostala područja

Čini se da je postojanje svijeta nemoguće bez veze s ovom funkcijom, a ona vlada svim zakonima. Pogotovo kada su zakoni prirode povezani s geometrijskom progresijom. Vrijedi se obratiti na web stranicu MatProfi, a takvih primjera ima mnogo u sljedećim područjima djelovanja:

Lista može biti beskonačna. Nakon što ste savladali osnovne principe ove funkcije, možete uroniti u svijet beskonačne mudrosti.

Šta je logaritam?

Pažnja!
Postoje dodatni
materijala u Posebnom dijelu 555.
Za one koji su veoma "ne baš..."
I za one koji "jako...")

Šta je logaritam? Kako riješiti logaritme? Ova pitanja zbunjuju mnoge diplomce. Tradicionalno, tema logaritma se smatra složenom, nerazumljivom i zastrašujućom. Posebno jednadžbe sa logaritmima.

Ovo apsolutno nije istina. Apsolutno! Ne veruješ mi? U redu. Sada, za samo 10 - 20 minuta vi:

1. Razumjeti šta je logaritam.

2. Naučite riješiti cijelu klasu eksponencijalnih jednačina. Čak i ako niste ništa čuli o njima.

3. Naučite izračunati jednostavne logaritme.

Štaviše, za ovo će vam biti potrebno samo znati tablicu množenja i kako podići broj na stepen...

Osećam kao da sumnjaš... Pa, dobro, označi vreme! Idi!

Prvo riješite ovu jednačinu u svojoj glavi:

Ako vam se sviđa ovaj sajt...

Inače, imam još par zanimljivih stranica za vas.)

Možete vježbati rješavanje primjera i saznati svoj nivo. Testiranje sa trenutnom verifikacijom. Učimo - sa interesovanjem!)

Možete se upoznati sa funkcijama i izvedenicama.

Logaritmi se, kao i svi brojevi, mogu sabirati, oduzimati i transformirati na sve načine. Ali pošto logaritmi nisu baš obični brojevi, ovdje postoje pravila koja se nazivaju glavna svojstva.

Ova pravila svakako morate znati - bez njih se ne može riješiti nijedan ozbiljan logaritamski problem. Osim toga, vrlo ih je malo - sve možete naučiti u jednom danu. Pa počnimo.

Sabiranje i oduzimanje logaritama

Razmotrimo dva logaritma sa istim osnovama: log a x i log a y. Tada se mogu sabirati i oduzimati i:

  1. log a x+log a y=log a (x · y);
  2. log a x− log a y=log a (x : y).

Dakle, zbir logaritama je jednak logaritmu proizvoda, a razlika je jednaka logaritmu količnika. Imajte na umu: ključna stvar je ovdje identične osnove. Ako su razlozi drugačiji, ova pravila ne funkcionišu!

Ove formule će vam pomoći da izračunate logaritamski izraz čak i kada se njegovi pojedinačni dijelovi ne uzimaju u obzir (pogledajte lekciju „Šta je logaritam“). Pogledajte primjere i pogledajte:

Dnevnik 6 4 + log 6 9.

Pošto logaritmi imaju iste baze, koristimo formulu sume:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Zadatak. Pronađite vrijednost izraza: log 2 48 − log 2 3.

Osnove su iste, koristimo formulu razlike:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Zadatak. Pronađite vrijednost izraza: log 3 135 − log 3 5.

Opet su baze iste, tako da imamo:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Kao što vidite, originalni izrazi su sastavljeni od „loših“ logaritama, koji se ne računaju zasebno. Ali nakon transformacija dobijaju se sasvim normalni brojevi. Mnogi testovi su zasnovani na ovoj činjenici. Da, izrazi poput testa se nude u potpunosti (ponekad i bez ikakvih promjena) na Jedinstvenom državnom ispitu.

Izdvajanje eksponenta iz logaritma

Sada da malo zakomplikujemo zadatak. Šta ako je osnova ili argument logaritma potencija? Tada se eksponent ovog stepena može izvaditi iz predznaka logaritma prema sljedećim pravilima:

Lako je vidjeti da posljednje pravilo slijedi prva dva. Ali ipak je bolje zapamtiti to - u nekim slučajevima to će značajno smanjiti količinu izračuna.

Naravno, sva ova pravila imaju smisla ako se poštuje ODZ logaritma: a > 0, a ≠ 1, x> 0. I još nešto: naučite primjenjivati ​​sve formule ne samo s lijeva na desno, već i obrnuto, tj. Brojeve prije znaka logaritma možete unijeti u sam logaritam. To je ono što se najčešće traži.

Zadatak. Pronađite vrijednost izraza: log 7 49 6 .

Oslobodimo se stepena u argumentu koristeći prvu formulu:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Zadatak. Pronađite značenje izraza:

[Natpis za sliku]

Imajte na umu da nazivnik sadrži logaritam, čija su osnova i argument tačni potenci: 16 = 2 4 ; 49 = 7 2. Imamo:

[Natpis za sliku]

Mislim da posljednji primjer zahtijeva pojašnjenje. Gdje su nestali logaritmi? Do poslednjeg trenutka radimo samo sa imeniocem. Osnovu i argument logaritma koji tu stoji predstavili smo u obliku stepena i iznijeli eksponente - dobili smo razlomak od tri sprata.

Pogledajmo sada glavni razlomak. Brojilac i imenilac sadrže isti broj: log 2 7. Pošto je log 2 7 ≠ 0, možemo smanjiti razlomak - 2/4 će ostati u nazivniku. Prema pravilima aritmetike, četvorka se može prenijeti u brojilac, što je i učinjeno. Rezultat je bio odgovor: 2.

Prelazak na novu osnovu

Govoreći o pravilima za sabiranje i oduzimanje logaritama, posebno sam naglasio da oni rade samo sa istim osnovama. Šta ako su razlozi drugačiji? Šta ako nisu tačne snage istog broja?

Formule za prelazak na novu podlogu dolaze u pomoć. Formulirajmo ih u obliku teoreme:

Neka je dat log logaritam a x. Zatim za bilo koji broj c takav da c> 0 i c≠ 1, jednakost je tačna:

[Natpis za sliku]

Konkretno, ako stavimo c = x, dobijamo:

[Natpis za sliku]

Iz druge formule proizilazi da se baza i argument logaritma mogu zamijeniti, ali se u ovom slučaju cijeli izraz „obrće“, tj. logaritam se pojavljuje u nazivniku.

Ove formule se rijetko nalaze u običnim numeričkim izrazima. Koliko su zgodne moguće je procijeniti samo pri rješavanju logaritamskih jednačina i nejednačina.

Međutim, postoje problemi koji se nikako ne mogu riješiti osim preseljenjem u novu osnovu. Pogledajmo par ovih:

Zadatak. Pronađite vrijednost izraza: log 5 16 log 2 25.

Imajte na umu da argumenti oba logaritma sadrže tačne potencije. Izvadimo indikatore: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Sada "obrnimo" drugi logaritam:

[Natpis za sliku]

Kako se proizvod ne mijenja pri preraspodjelu faktora, mirno smo pomnožili četiri i dva, a zatim se pozabavili logaritmima.

Zadatak. Pronađite vrijednost izraza: log 9 100 lg 3.

Osnova i argument prvog logaritma su tačni potenci. Zapišimo ovo i riješimo se indikatora:

[Natpis za sliku]

Sada se riješimo decimalnog logaritma pomicanjem na novu bazu:

[Natpis za sliku]

Osnovni logaritamski identitet

Često je u procesu rješavanja potrebno predstaviti broj kao logaritam na datu bazu. U ovom slučaju pomoći će nam sljedeće formule:

U prvom slučaju broj n postaje indikator stepena statusa u argumentu. Broj n može biti apsolutno bilo šta, jer je to samo logaritamska vrijednost.

Druga formula je zapravo parafrazirana definicija. To se zove: osnovni logaritamski identitet.

U stvari, šta će se dogoditi ako broj b podići na takav stepen da broj b ovoj potenciji daje broj a? Tako je: dobijate isti broj a. Pažljivo pročitajte ovaj odlomak ponovo - mnogi ljudi zaglave u njemu.

Kao i formule za prelazak na novu bazu, osnovni logaritamski identitet je ponekad jedino moguće rješenje.

Zadatak. Pronađite značenje izraza:

[Natpis za sliku]

Imajte na umu da je log 25 64 = log 5 8 - jednostavno uzeo kvadrat iz baze i argumenta logaritma. Uzimajući u obzir pravila za množenje potencija sa istom osnovom, dobijamo:

[Natpis za sliku]

Ako neko ne zna, ovo je bio pravi zadatak sa Jedinstvenog državnog ispita :)

Logaritamska jedinica i logaritamska nula

U zaključku ću dati dva identiteta koja se teško mogu nazvati svojstvima – radije, oni su posljedice definicije logaritma. Stalno se pojavljuju u problemima i, iznenađujuće, stvaraju probleme čak i „naprednim“ učenicima.

  1. log a a= 1 je logaritamska jedinica. Zapamtite jednom za svagda: logaritam na bilo koju bazu a iz same ove baze jednak je jedan.
  2. log a 1 = 0 je logaritamska nula. Baza a može biti bilo šta, ali ako argument sadrži jedan, logaritam je jednak nuli! Jer a 0 = 1 je direktna posljedica definicije.

To je sva imovina. Obavezno vježbajte u njihovoj primjeni! Preuzmite cheat sheet na početku lekcije, odštampajte ga i riješite probleme.

Slučajni članci

Gore