Транспорт веществ через клеточные мембраны. Мембранный транспорт Активный и пассивный транспорт веществ через мембраны

Различают несколько способов переноса веществ через мембрану:

Простая диффузия – это перенос небольших нейтральных молекул по градиенту концентрации без затрат энергии и переносчиков. Легче всего проходят простой диффузией через липидную мембрану малые неполярные молекулы, такие как О 2 , стероиды, тиреоидные гормоны. Малые полярные незаряженные молекулы – СО 2 , NH 3 , H 2 O, этанол и мочевина – также диффундируют с достаточной скоростью. Диффузия глицерола идет значительно медленнее, а глюкоза практически не способна самостоятельно пройти через мембрану. Для всех заряженных молекул, независимо от размера, липидная мембрана не проницаема.

Облегченная диффузия – перенос вещества по градиенту концентрации без затрат энергии, но с переносчиком. Характерна для водорастворимых веществ. Облегченная диффузия отличается от простой большей скоростью переноса и способностью к насыщению. Различают две разновидности облегченной диффузии:

а) транспорт по специальным каналам, образованным в трансмебранных белках (например, катионселективные каналы);

б) с помощью белков-транслоказ, которые взаимодействуют со специфическим лигандом, обеспечивают его диффузию по градиенту концентрации (пинг-понг) (перенос глюкозы в эритроциты с помощью белка-переносчика ГЛЮТ-1).

Кинетически перенос веществ облегченной диффузией напоминает ферментативную реакцию. Для транслоказ существует насыщающая концентрация лиганда, при которой все центры связывания белка с лигандом заняты, и белки работают с максимальной скоростью. Поэтому скорость транспорта веществ облегченной диффузией зависит не только от градиента концентраций переносимого вещества, но и от количества беков-переносчиков в мембране.

Простая и облегченная диффузия относится к пассивному транспорту, так как происходит без затраты энергии.

Активный транспорт – транспорт вещества против градиента концентрации (незаряженные частицы) или электрохимического градиента (для заряженных частиц), требующий затрат энергии, чаще всего АТФ. Выделяют два вида его: первично активный транспорт использует энергию АТФ или окислительно-восстановительного потенциала и осуществляется с помощью транспортных АТФ-аз. Наиболее распространены в плазматической мембране клеток человека Na + ,K + - АТФ-аза, Са 2+ -АТФ-аза, Н + -АТФ-аза.

При вторично активном транспорте используется градиент ионов, созданный на мембране за счет работы системы первично активного транспорта (всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы и аминокислот клетками почек, осуществляемые при движении ионов Na + по градиенту концентрации).

Перенос через мембрану макромолекул . Транспортные белки обеспечивают перенос через клеточную мембрану полярных молекул небольшого размера, но они не могут транспортировать макромолекулы, например белки, нуклеиновые кислоты, полисахариды или отдельные частицы. Механизмы, с помощью которых клетки могут усваивать такие вещества или удалять их из клетки, отличаются от механизмов транспорта ионов и полярных соединений.

А) Перенос вещества из среды в клетку вместе с частью плазматической мембраны называют эндоцитоз . Путем эндоцитоза (фагоцитоза) клетки могут поглощать большие частицы, такие как вирусы, бактерии или фрагменты клеток. Поглощение жидкости и растворенных в ней веществ с помощью небольших пузырьков называют пиноцитозом .

Б) Экзоцитоз . Макромолекулы, например белки плазмы крови, пептидные гормоны, пищеварительные ферменты синтезируются в клетках и затем секретируются в межклеточное пространство или кровь. Но мембрана не проницаема для таких макромолекул или комплексов, их секреция происходит путем экзоцитоза. В организме имеются как регулируемый так и не регулируемый пути экзоцитоза. Нерегулируемая секреция характеризуется непрерывным синтезом секретируемых белков. Примером может служить синтез и секреция коллагена фибробластами для формирования межклеточного матрикса.

Для регулируемой секреции характерны хранение приготовленных на экспорт молекул в транспортных пузырьках. С помощью регулируемой секреции происходят выделение пищеварительных ферментов, а также секреция гормонов и нейромедиаторов.

Градиент концентрации (от лат. gradi, gradu, gradus - ход, движение, течение, приближение; con - с, вместе, совместно + centrum - центр) или концентрационный градиент - это векторная физическая величина , характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделенные полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Активный транспорт - перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ .

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств - насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин - насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом - транспортом другого вещества, движение которого против градиента концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Пассивный транспорт - перенос веществ по градиенту концентрации из области высокой концентрации в область низкой, без затрат энергии (например, диффузия , осмос ). Диффузия - пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос - пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят).

Существует три типа проникновения веществ в клетку через мембраны: простая диффузия, облегчённая диффузия, активный транспорт .

Простая диффузия

При простой диффузии частицы вещества перемещаются сквозь билипидный слой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2,N2,бензол) и полярные маленькие молекулы (CO 2 , H 2 O, мочевина ). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Облегченная диффузия

Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегченной диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегченной диффузии по сравнению с простой пассивной диффузией. Скорость облегченной диффузии зависит от ряда причин: от трансмембранного концентрационного градиента переносимого вещества, от количества переносчика, который связывается с переносимым веществом, от скорости связывания вещества переносчиком на одной поверхности мембраны (например, на наружной), от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны. Облегченная диффузия не требует специальных энергетических затрат за счет гидролиза АТФ. Эта особенность отличает облегченную диффузию от активного трансмембранного транспорта.

Активный транспорт веществ осуществляется против суммарного (обобщенного) градиента. Это означает, что перенос вещества идет из мест с меньшим значением электрохимического потенциала в места с его большим значением.

Активный транспорт не может идти самопроизвольно, а только в сопряжении с процессом гидролиза аденозинтрифосфорной кислоты (АТФ), то есть за счет затраты энергии, запасенной в макроэргических связях молекулы АТФ.

Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет активного транспорта в организме создаются градиенты концентраций, градиенты электрических потенциалов, градиенты давления и т.д., поддерживающие жизненные процессы, то есть с точки зрения термодинамики активный перенос удерживает организм в неравновесном состоянии, обеспечивая нормальное протекание жизненных процессов.

Для осуществления активного переноса помимо источника энергии необходимо существование определенных структур. Согласно современным представлениям, в биологических мембранах имеются ионные насосы, работающие за счет энергии гидролиза АТФ или так называемые транспортные АТФ-азы, представленные белковыми комплексами.

В настоящее время известны три типа электрогенных ионных насосов, осуществляющих активный перенос ионов через мембрану. Это К + -Nа + -АТФаза в цитоплазматических мембранах (К + -Nа + -насос), Са 2+ - АТФаза (Са 2+ -насос) и Н + - АТФаза в энергосопрягающих мембранах митохондрий (Н + - насос или протонная помпа).

Перенос ионов транспортными АТФазами происходит вследствие сопряжения процессов переноса с химическими реакциями, за счет энергии метаболизма клеток.

При работе К + -Nа + -АТФазы за счет энергии, освобождающейся при гидролизе каждой молекулы АТФ, в клетку переносится два иона калия и одновременно из клетки выкачиваются три иона натрия. Таким образом, создается повышенная по сравнению с межклеточной средой концентрация в клетке ионов калия и пониженная натрия, что имеет большое физиологическое значение.

В Са 2+ -АТФазе за счет энергии гидролиза АТФ переносятся два иона кальция, а в Н + - помпе – два протона.

Молекулярный механизм работы ионных АТФаз до конца не изучен. Тем не менее, прослеживаются основные этапы этого сложного ферментативного процесса. В случае К + -Nа + -АТФазы (обозначим ее для краткости Е) насчитывается семь этапов переноса ионов, сопряженных с гидролизом АТФ. Обозначения Е 1 и Е 2 соответствуют расположению активного центра фермента на внутренней и внешней поверхностях мембраны (АДФ- аденозиндифосфат, Р – неорганический фосфат, звездочкой обозначен активированный комплекс):

1) Е + АТФ à Е*АТФ,

2) Е*АТФ + 3Nаà [Е*АТФ]*Nа 3 ,

3) [Е*АТФ]*Nа 3 à *Na 3 + АДФ,

4) *Na 3 à *Na 3 ,

5) *Na 3 + 2K à *K 2 + 3Na,

6) *K 2 à *K 2,

7) *K 2 à E + P + 2K.

На схеме видно, что ключевыми этапами работы фермента являются: 1) образование комплекса фермента с АТФ на внутренней поверхности мембраны (эта реакция активируется ионами магния); 2) связывание комплексом трех ионов натрия; 3) фосфорилирование фермента с образованием аденозиндифосфата; 4) изменение конформации фермента внутри мембраны; 5) реакция ионного обмена натрия на калий, происходящая на внешней поверхности мембраны; 6) обратное изменение конформации ферментного комплекса с переносом ионов калия внутрь клетки, и 7) возвращение фермента в исходное состояние с освобождением ионов калия и неорганического фосфата. Таким образом, за полный цикл происходят выброс из клетки трех ионов натрия, обогащение цитоплазмы двумя ионами калия и гидролиз одной молекулы АТФ.

Помимо ионных насосов, рассмотренных выше, известны сходные системы, в которых накопление веществ сопряжено не с гидролизом АТФ, а с работой окислительно-восстановительных ферментов или фотосинтезом. Транспорт веществ в этом случае является вторичным, опосредованным мембранным потенциалом и (или) градиентом концентрации ионов при наличии в мембране специфических переносчиков. Такой механизм переноса получил название вторичного активного транспорта. В плазматических и субклеточных мембранах живых клеток возможно одновременное функционирование первичного и вторичного активного транспорта. Такой механизм переноса особенно важен для тех метаболитов, насосы для которых отсутствуют (сахара, аминокислоты).

Совместный однонаправленный перенос ионов с участием двухместного переносчика называется симпортом. Предполагается, что в мембране могут находиться переносчик в комплексе с катионом и анионом и пустой переносчик. Поскольку мембранный потенциал в такой схеме переноса не изменяется, то причиной переноса может быть разность концентраций одного из ионов. Считается, что по схеме симпорта осуществляется накопление клетками аминокислот.

Выводы и заключение.

В процессе жизнедеятельности границы клетки пересекают разнообразные вещества, потоки которых эффективно регулируются. С этой задачей справляется клеточная мембрана с встроенными в нее транспортными системами, включающими ионные насосы, систему молекул-переносчиков и высокоселективные ионные каналы.

Такое обилие систем переноса на первый взгляд кажется излишним, ведь работа только ионных насосов позволяет обеспечить характерные особенности биологического транспорта: высокую избирательность, перенос веществ против сил диффузии и электрического поля. Парадокс заключается, однако, в том, что количество потоков, подлежащих регулированию, бесконечно велико, в то время как насосов всего три. В этом случае особое значение приобретают механизмы ионного сопряжения, получившие название вторичного активного транспорта, в которых важную роль играют диффузные процессы. Таким образом, сочетание активного транспорта веществ с явлениями диффузионного переноса в клеточной мембране – это та основа, которая обеспечивает жизнедеятельность клетки.

Разработала заведующая кафедрой биологической и медицинской физики кандидат физико-математических наук доцент Новикова Н.Г.

Пассивный транспорт включает простую и облегченную диффузию - процессы, которые не требуют затраты энергии. Диффузия – транспорт молекул и ионов через мембрану из области с высокой в область с низкой их концентрацией, те. вещества поступают по градиенту концентрации. Диффузия воды через полупроницаемые мембраны называется осмосом. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ. Механизмом простой диффузии осуществляется перенос мелких молекул (например, О2, Н2О, СО2); этот процесс малоспецифичен и протекает со скоростью, пропорциональной градиенту концентрации транспортируемых молекул по обеим сторонам мембраны.

Облегченная диффузия осуществляется через каналы и (или) белки-переносчики, которые обладают специфичностью в отношении транспортируемых молекул. В качестве ионных каналов выступают трансмембранные белки, образующие мелкие водные поры, через которые по электрохимическому градиенту транспортируются мелкие водорастворимые молекулы и ионы. Белки-переносчики также являются трансмембранными белками, которые претерпевают обратимые изменения конформации, обеспечивающие транспорт специфических молекул через плазмолемму. Они функционируют в механизмах как пассивного, так и активного транспорта.

Активный транспорт является энергоемким процессом, благодаря которому перенос молекул осуществляется с помощью белков-пере­носчиков против электрохимического градиента. Примером механизма, обеспечивающего противоположно направленный активный транспорт ионов, служит натриево-калиевый насос (представленный белком-пере­носчиком Nа + -К + -АТФазой), благодаря которому ионы Na + выводятся из цитоплазмы, а ионы К + одновременно переносятся в нее. Концентрация К + внутри клетки в 10-20 раз выше, чем снаружи, а концентрация Na наоборот. Такая разница в концентрациях ионов обеспечивается работой (Na*-K*> насоса. Для поддержания данной концентрации происходит перенос трех ионов Na из клетки на каждые два иона К* в клетку. В этом процессе принимает участие белок в мембране, выполняющий функцию фермента, расщепляющего АТФ, с высвобождением энергии, необходимой для работы насоса.
Участие специфических мембранных белков в пассивном и активном транспорте свидетельствует о высокой специфичности этого процесса. Этот механизм обеспечивает поддержание постоянства объема клетки (путем регуляции осмотического давления), а также мембранного потенциала. Активный транспорт глюкозы в клетку осуществляется белком-переносчиком и сочетается с однонаправленным переносом иона Nа + .

Облегченный транспорт ионов опосредуется особыми трансмем­бранными белками - ионными каналами, обеспечивающими избиратель­ный перенос определенных ионов. Эти каналы состоят из собственно транспортной системы и воротного механизма, который открывает канал на некоторое время в ответ на изменение мембранного потенциала, (б) механическое воздействие (например, в волосковых клетках внутреннего уха), связывание лиганда (сигнальной молекулы или иона).

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ :

  • Унипорт - транспорт одного вещества в одном направлении в зависимости от градиента
  • Симпорт - транспорт двух веществ в одном направлении через один переносчик.
  • Антипорт - перемещение двух веществ в разных направлениях через один переносчик.

Унипорт осуществляет, например, потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются ионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и ион натрия и, меняя конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередью создается за счет гидролиза АТФ натрий-калиевой АТФ-азой.

Антипорт осуществляет, например, натрий–калиевая АТФаза (или натрий–зависимая АТФаза). Она переносит в клетку ионы калия. а из клетки - ионы натрия. Первоначально этот переносчик присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны.

Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na + и ион (фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na + отщепляются, а замещается на два иона K + . Затем конформация переносчика изменяется на первоначальную, и ионы K + оказываются на внутренней стороне мембраны. Здесь ионы K + отщепляются, и переносчик вновь готов к работ

Конспект лекции № 3.

Тема. Субклеточный и клеточный уровни организации живого.

Строение биологических мембран.

Основа биологической мембраны всех живых организмов- это двойная фосфолипидная структура. Фосфолипиды клеточных мембран представляют собой триглицериды, у которых одна из жирных кислот замещена на фосфорную кислоту. Гидрофильные "головки" и гидрофобные "хвостики" фосфолипидных молекул ориентированы так, что возникает два ряда молекул, головки которых прикрывают от воды "хвостики".

В такую фосфолипидную структуру интегрированы разные по величине и форме белки.

Индивидуальные свойства и особенности мембраны определяются преимущественно белками. Разный белковый состав определяет разницу строения и функций органоидов любых видов животных. Влияние состава липидов мембран на их свойства значительно ниже.

Транспорт веществ через биологические мембраны.


Транспорт веществ через мембрану делят на пассивный (без затрат энергии по градиенту концентрации) и активный (с затратами энергии).

Пассивный транспорт: диффузия, облегченная диффузия, осмос.

Диффузия - это движение растворенных в среде частиц из зоны с высокой концентрацией в зону с низкой концентрацией (растворение сахара в воде).

Облегченная диффузия - это диффузия с помощью белка-канала (поступление глюкозы в эритроциты).


Осмос - это движение частиц растворителя из зоны с меньшей концентрацией растворенного вещества в зону с высокой концентрацией (эритроцит в дистиллированной воде набухает и лопается).

Активный транспорт делят на транспорт, связанный с изменением формы мембраны и транспорт белками-ферментами-насосами.

В свою очередь, транспорт, связанный с изменением формы мембран, делят на три вида.

Фагоцитоз - это захват плотного субстрата (лейкоцит-макрофаг захватывает бактерию).

Пиноцитоз - это захват жидкостей (питание клеток зародыша на первых стадиях внутриутробного развития).

Транспорт белками-ферментами-насосами - это передвижение вещества через мембрану с помощью белков-переносчиков, интегрированных в мембрану (транспорт ионов натрия и калия "из" и "в" клетку, соответственно).

По направлению транспорт делят на экзоцитоз (из клетки) и эндоцитоз (в клетку).

Классификация составных частей клетки проводится по различным критериям.

По наличию биологических мембран органоиды делят на двумембранные, одномембранные и немембранные.

По функциям органоиды можно разделить на неспецифические (универсальные) и специфические (специализированные).

По значению при повреждении на жизненноважные и восстановимые.

По принадлежности к разным группам живых существ на растительные и животные.

Мембранные (одно- и двумембранные) органоиды имеют сходное с точки зрения химии строение.

Двумембранные органоиды.

Ядро. Если клетки организма имеют ядро, то их называют эукариотами. Ядерная оболочка имеет две близкорасположенные мембраны. Между ними находится перинуклеарное пространство. В ядерной оболочке есть отверстия - поры. Ядрышки - это части ядра ответственные за синтез РНК. В ядрах некоторых клеток женщин в норме выделяется 1 тельце Барра - неактивная Х-хромосома. При делении ядра становятся заметны все хромосомы. Вне деления хромосомы, как правило, не видны. Ядерный сок - кариоплазма. Ядро обеспечивает хранение и функционирование генетической информации.

Митохондрии. Внутренняя мембрана имеет кристы, которые увеличивают площадь внутренней поверхности для ферментов аэробного окисления. Митохондрии имеют свою ДНК, РНК, рибосомы. Главная функция - завершение окисления и фосфорилирование АДФ

АДФ+Ф=АТФ.

Пластиды (хлоропласты, хромопласты, лейкопласты). Пластиды имеют собственные нуклеиновые кислоты и рибосомы. В строме хлоропластов имеются дискообразные мембраны, собранные в стопки, где находится хлорофилл, ответственный за фотосинтез.

Хромопласты имеют пигменты, которые определяют желтую, красную, оранжевую окраску листьев, цветков и плодов.

Лейкопласты запасают питательные вещества.

Одномембранные органоиды.

Наружная цитоплазматическая мембрана отделяет клетку от внешней среды. Мембрана имеет белки, которые выполняют разные функции. Различают белки-рецепторы, белки-ферменты, белки-насосы, белки-каналы. Наружная мембрана обладает избирательной проницаемостью, обеспечивая транспорт веществ через мембрану.

У некоторых мембран выделяют элементы надмембранного комплекса - клеточная стенка у растений, гликокаликс и микроворсинки клеток эпителия кишечника у людей.

Имеется аппарат контакта с соседними клетками (например, десмосомы) и субмембранный комплекс (фибриллярные структуры), обеспечивающий устойчивость и форму мембраны.

Эндоплазматическая сеть (ЭПС) - это система мембран, образующих цистерны и каналы для взаимосвязей внутри клетки.

Различают гранулярную (шероховатую) и гладкую ЭПС.

На гранулярной ЭПС имеются рибосомы, где происходит биосинтез белков.

На гладкой ЭПС синтезируются липиды и углеводы, окисляется глюкоза (бескислородный этап), обезвреживаются эндогенные и экзогенные (ксенобиотики-чужеродные, в том числе, лекарственные) вещества. Для обезвреживания на гладкой ЭПС имеются белки-ферменты, катализирующие 4 главных типа химических реакций: окисление, восстановление, гидролиз, синтез (метилирование, ацетилирование, сульфатирование, глюкуронирование). В содружестве с аппаратом Гольджи ЭПС принимает участие в формировании лизосом, вакуолей и других одномембранных органоидов.

Аппарат Гольджи (пластинчатый комплекс) - это компактная система из плоских мембранных цистерн, дисков, пузырьков, которая тесно связана с ЭПС. Пластинчатый комплекс принимает участие в формировании оболочек (например, для лизосом и секреторных гранул) отграничивающих гидролитические ферменты и другие вещества от содержимого клетки.

Лизосомы - пузырьки с гидролитическими ферментами. Лизосомы активно участвуют во внутриклеточном пищеварении, в фагоцитозе. Они переваривают захваченные клеткой объекты, сливаясь с пиноцитарными и фагоцитарными пузырьками. Могут переваривать собственные изношенные органоиды. Лизосомы фагов обеспечивают иммунную защиту. Лизосомы опасны тем, что при разрушении их оболочки может произойти аутолизис (самопереваривание) клетки.

Пероксисомы - это мелкие одномембранные органоиды, содержащие фермент каталазу, который нейтрализует перекись водорода. Пероксисомы - это органоиды защиты мембран от свободнорадикального перекисного окисления.

Вакуоль - это одномембранные органоиды, характерные для растительных клеток. Их функции связаны с поддержанием тургора и (или) запасанием веществ.

Немембранные органоиды.

Рибосомы - это рибонуклеопротеиды, состоящие из большой и малой субъединиц р-РНК. Рибосомы являются местом сборки белка.

Фибриллярные (нитеобразные) структуры - это микротрубочки, промежуточные филаменты и микрофиламенты.

Микротрубочки. По строению напоминают бусы, нить которых завита в плотную пружину-спираль. Каждая "бусинка" представляет собой белок-тубулин. Диаметр трубочки 24 нм. Микротрубочки - это часть системы каналов, обеспечивающих внутриклеточный транспорт веществ. Они укрепляют цитоскелета, принимают участие в формировании веретена деления, центриолей клеточного центра, базальных телец, ресничек и жгутиков.

Клеточный центр - участок цитоплазмы с двумя центриолями, образованными из 9 триплетов (по 3 микротрубочки). Таким образом, каждая центриоль состоит из 27 микротрубочек. Считается, что клеточный центр является базой для формирования нитей веретена деления клетки.

Базальные тельца - это основания ресничек и жгутиков. На поперечном разрезе реснички и жгутики имеют девять пар микротрубочек по окружности и одну пару в центре, всего 18+2=20 микротрубочек. Реснички и жгутики обеспечивают движение микроорганизмов и клеток (сперматозоиды) в среде их обитания.

Промежуточные филаменты имеют диаметр 8-10 нм. Они обеспечивают функции цитоскелета.

Микрофиламенты с диаметром 5-7 нм преимущественно состоят из белка актина. Во взаимодействии с миозином они отвечают не только за мышечные сокращения, но и за сократительную активность не мышечных клеток. Так, изменения формы мембраны при фагоцитозе и активность микроворсинок объясняют работой микрофиламентов.

Случайные статьи

Вверх