Сообщение на тему генетика теоретическая основа селекции. Генетика как теор.основа Селекции. Что такое селекция

ГЕНЕТИКА - ТЕОРЕТИЧЕСКАЯ ОСНОВА СЕЛЕКЦИИ. СЕЛЕКЦИЯ И ЕЕ МЕТОДЫ.

  • Селекция - наука о выведении новых и совершенствовании уже существующих старых сортов растений, пород животных и штаммов микроорганизмов с необходимыми человеку свойствами.
  • Сорт - популяция растений, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
  • Порода - популяция животных, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
  • Штамм - популяция микроорганизмов, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.

2. Каковы основные задачи селекции как науки?

  1. Повышение продуктивности сортов растений, пород животных и штаммов микроорганизмов;
  2. Изучение разнообразия сортов растений, пород животных и штаммов микроорганизмов;
  3. Анализ закономерностей наследственной изменчивости при гибридизации и мутационном процессе;
  4. Исследование роли среды в развитии признаков и свойств организмов;
  5. Разработка систем искусственного отбора, способствующих усилению и закреплению полезных для человека признаков у организмов с разными типами размножения;
  6. Создание устойчивых к заболеваниям и климатическим условиям сортов и пород;
  7. Получение сортов, пород и штаммов, пригодных для механизированного промышленного выращивания и разведения.

3. Что является теоретической базой селекции?

Ответ : Теоретической базой селекции является генетика. Она также использует достижения теории эволюции, молекулярной биологии, биохимии и других биологических наук.

4. Заполните таблицу " Методы селекции".

5. Какое значение имеет селекция в хозяйственной деятельности человека?

Ответ : Селекция позволяет повышать продуктивность сортов растений, пород животных и штаммов микроорганизмов; разрабатывать системы искусственного отбора, способствующие усилению и закреплению полезных для человека признаков у различных организмов; создавать устойчивые к заболеваниям и климатическим условиям сорта и породы; получать сорта, породы и штаммы, пригодные для механизированного промышленного выращивания и разведения.

УЧЕНИЕ Н.И. ВАВИЛОВА О ЦЕНТРАХ МНОГООБРАЗИЯ И ПРОИСХОЖДЕНИЯ КУЛЬТУРНЫХ РАСТЕНИЙ.

1. Дайте определения понятий.

  • Центр многообразия и происхождения - территория (географическая область), в пределах которой формировался вид или другая систематическая категория сельскохозяйственных культур и откуда они распространились.
  • Гомологический ряд - сходный ряд наследственной изменчивости у генетически близких видов и родов.

2. Сформулируйте закон гомологических рядов наследственной изменчивости.

Ответ : Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуется определенным циклом изменчивости, проходящий через все роды и виды, составляющие семейство.

3. Заполните таблицу " Центры происхождения и многообразия культурных растений".

БИОТЕХНОЛОГИЯ, ЕЕ ДОСТИЖЕНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ.

1. Дайте определения понятий.

  • Биотехнология - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.
  • Клеточная инженерия - это создание клеток нового типа на основе их гибридизации, реконструкции и культивирования. В узком смысле слова под этим термином понимают гибридизацию протопластов или животных клеток, в широком - различные манипуляции с ними, направленные на решение научных и практических задач.
  • Генная инженерия - совокупность приемов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма, осуществления манипуляций с генами и введения их в другие организмы.

2. Какова роль биотехнологии в практической деятельности человека?

Ответ : Процессы биотехнологии используются в хлебопечении, виноделии, пивоварении, приготовлении кисломолочных продуктов; микробиологические процессы - для получения ацетона, бутанола, антибиотиков, витаминов, кормового белка; биотехнология также включает в себя использование живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, возможность создания живых организмов с необходимыми свойствами.

3. Каковы перспективы развития биотехнологии?

Дальнейшее развитие биотехнологии поможет решить ряд важнейших задач :

  1. Решить проблему нехватки продовольствия.
  2. Повысить урожайность культурных растений, создавать более устойчивые к неблагоприятным воздействиям сорта, а также находить новые способы защиты растений.
  3. Создавать новые биологические удобрения, биогумус.
  4. Находить альтернативные источники животного белка.
  5. Размножать растения вегетативно при помощи метода культуры тканей.
  6. Создавать новые лекарства и БАДы.
  7. Проводить раннюю диагностику инфекционных заболеваний и злокачественных новообразований.
  8. Получать экологически чистые виды топлива путем переработки отходов промышленного и сельскохозяйственного производства.
  9. Перерабатывать полезные ископаемые новыми способами.
  10. Использовать методы биотехнологии в большинстве отраслей деятельности во благо человечества.

4. В чем вы видите возможные негативные последствия неконтролируемых исследований в области биотехнологии?

Ответ : Трансгенные продукты могут принести вред здоровью, вызывать злокачественные опухоли клонирование человека негуманно и противоречит мировоззрениям многих наций. Новейшие разработки биотехнологии могут привести к неконтролируемым последствиям: созданию новых вирусов и микроорганизмов, чрезвычайно опасных для человека, а также к контролируемым: созданию биологического оружия.

Современный период развития селекции начинается с формирования новой науки – генетики. Генетика – это наука, изучающая наследственность и изменчивость организмов. Очень важный вклад в выяснение сущности наследственности внес Г. Мендель (1822-1884), опыты которого по скрещиванию растений лежат в основе большинства современных исследований по наследственности. Чех по национальности, монах францисканского монастыря в Брюнне (ныне г. Брно), Г. Мендель вместе с тем преподавал естественные науки в реальном училище и очень интересовался садоводством. В течение многих лет он все свободное время посвящал опытам по скрещиванию различных культурных растений. В результате были открыты закономерности передачи признаков потомству. Свои результаты Г. Мендель доложил на заседании «Общества естествоиспытателей» в г. Брно, а потом опубликовал их в 1866 г. в научных работах этого Общества. Однако эти положения противоречили существующим в то время представлениям о наследственности и поэтому получили признание спустя 34 года после их переоткрытия.

В 1900 году одновременно появились три работы, выполненные тремя генетиками: Гуго де Фризом из Голландии, К. Корренсом из Германии и Э. Чермаком из Австрии. Они подтвердили законы наследственности, открытые Г. Менделем.

Опубликованные работа де Фриза, Корренса и Чермака обычно зовут повторным открытием законов Менделя и 1900 г. считается официальной датой начала существования экспериментальной генетики как самостоятельной науки.

Генетика как самостоятельная наука была выделена из биологии по предложению английского ученого Бэтсона в 1907 году. Он предложил и название науки – генетика.

С момента переоткрытия законов Менделя Н. П. Дубинин (1986) выделяет три этапа в развитии генетики.

Первый этап - это эпоха классической генетики, длившаяся с 1900 по 1930 годы. Это было время создания теории гена и хромосомной теории наследственности. Важнейшее значение имели также разработки учения о фенотипе и генотипе, о взаимодействии генов, генетических принципах индивидуального отбора в селекции, учения о мобилизации генетических резервов планеты для целей селекции. Некоторые из открытий этого периода заслуживают особого упоминания.

Немецкий биолог Август Вейсман (1834-1914) создал теорию, которая во многом предвосхитила хромосомную теориюнаследственности.

Гипотезы Вейсмана о смысле редукционного деления. Кроме того, он разграничил признаки, которые наследуются, и признаки, которые приобретаются под влиянием внешних условий или упражнения

А. Вейсман пытался экспериментально доказать ненаследуемость механических повреждений (в течение поколений он обрубал ей хвосты, но не получал в потомстве бесхвостых).

В дальнейшем общая концепция А. Вейсмана была уточнена с учетом данных цитологии и сведений о роли ядра в наследовании признаков. В целом он первым доказал невозможность наследования признаков, приобретенных в онтогенезе, и подчеркнул автономию зародышевых клеток, а также показал биологическое значение редукции числа хромосом в мейозе как механизма поддержания постоянства диплоидного хромосомного набора вида и основы комбинативной изменчивости.

В 1901 году Г. Де Фриз сформулировал мутационную теорию, во многом совпадающую с теорией гетерогенеза (1899) русского ботаника С. И. Коржинского (1861–1900). Согласно мутационной теории Коржинского – Де Фриза, наследственные признаки не являются абсолютно константными, а могут скачкообразно изменяться вследствие изменения –мутирования их задатков.

Важнейшая веха в развитии генетики – создание хромосомной теории наследственности –связана с именем американского эмбриолога и генетика Томаса Гента Моргана (1866–1945) и его школы. На основе экспериментов с плодовой мушкой – Drosophila melanogaster Морган к середине 20-х годов нашего века сформировал представление о линейном расположении генов в хромосомах и создал первый вариант теории гена – элементарного носителя наследственной информации. Проблема гена стала центральной проблемой генетики. Она разрабатывается и в настоящее время.

Свое продолжение учение о наследственной изменчивости получило в трудах советского ученого Николая Ивановича Вавилова (1887–1943), сформулировавшего в 1920 закон гомологических рядов наследственной изменчивости. Этот закон обобщил огромный материал о параллелизме изменчивости близких родов и видов, таким образом, связав воедино систематику и генетику. Закон явился крупным шагом на пути последующего синтеза генетики и эволюционного учения. Н. И. Вавилов создал также теорию генетических центров культурных растений, которая в значительной степени облегчила поиск и интродукцию необходимых генотипов растений.

В этот же период стали быстро развиваться и некоторые другие направления генетики, важные для сельского хозяйства. К ним относятся работы по изучению закономерностей наследования количественных признаков (в частности, исследования шведского генетика Г. Нильсона-Эле), по выяснению гибридной мощности – гетерозиса (работы американских генетиков Э. Иста и Д. Джонса), по межвидовой гибридизации плодовых растений (И. В. Мичурин в России и Л. Бэрбанк в США), многочисленные исследования, посвященные частной генетике разных видов возделываемых растений и домашних животных.

К этому же этапу относится и становление генетики в СССР. В послеоктябрьские годы сложились три генетические школы, возглавляемые крупными учеными – Н. К. Кольцовым (1872–1940) в Москве, Ю. А. Филипченко (1882–1930) и Н. И. Вавиловым (1887–1943) в Ленинграде, сыгравшие важную роль в развитии исследований по генетике.

Второй этап, – это этап неоклассицизма в генетике, длившийся с 1930 по 1953 гг. Начало второго этапа можно связать с открытием О. Эйвери в 1944 году вещества наследственности - дизоксирибонуклеиновой кислоты (ДНК).

Это открытие символизировало начало нового этапа в генетике – рождение молекулярной генетики, которая легла в основу целого ряда открытий биологии XX века.

В эти годы была открыта возможность искусственного вызывания изменений в генах и хромосомах (экспериментальный мутагенез); обнаружено, что ген –это сложная система, дробимая на части; обоснованы принципы генетики популяций и эволюционной генетики; создана биохимическая генетика, показавшая роль генов для всех основных биосинтезов в клетке и организме;

К достижениям этого периода в первую очередь относится искусственный мутагенез. Первые данные о том, что мутации можно вызвать искусственно, были получены в 1925 году в СССР Г. А. Надсоном и Г. С. Филипповым в опытах по облучению низших грибов (дрожжей) радием, а решающие доказательства возможности экспериментального получения мутаций дали в 1927 г. опыты американца Меллера по воздействию рентгеновских лучей.

Другой американский биолог Дж. Стадлер (1927) открыл аналогичные эффекты у растений. Затем было обнаружено, что ультрафиолетовые лучи тоже могут вызывать мутации и что этой же способностью, хотя и в слабой степени, обладает высокая температура. Вскоре появились также сведения о том, что мутации можно вызвать химическими веществами. Это направление приобрело широкий размах благодаря исследованиям И. А. Рапопорта в СССР и Ш. Ауэрбах в Великобритании. Используя метод индуцированного мутагенеза, советские ученые во главе с А. С. Серебровским (1892–1948) приступили к изучению строения гена у Drosophila Mеlanogaster. В своих исследованиях (1929–1937) они впервые показали его сложную структуру.

На этом же этапе истории генетики возникло и развилось направление, ставящее целью изучение генетических процессов в эволюции. Основополагающие работы в этой области принадлежали советскому ученому С. С. Четверикову (1880–1959), английским генетикам Р.Фишеру И Дж. Холдэйну и американскому генетику С. Райту. С. С. Четвериков и его сотрудники осуществили на нескольких видах дрозофил первые экспериментальные исследования генетического строения природных популяций. Они подтвердили значение мутационного процесса в природных популяциях. Затем эти работы были продолжены Н. П. Дубининым в СССР и Ф. Добжанским в США.

На рубеже 40-х годов Дж. Билл (род. в 1903 г.) и Э. Тейтум (1909–1975) заложили основы биохимической генетики.

Приоритет в расшифровке структуры молекулы ДНК принадлежит американскому вирусологу Джеймсу Дью Уотсону (род. в 1928 г.) и английскому физику Френсису Крику (род. в 1916 г.), опубликовавшим в 1953 году структурную модель этого полимера.

С этого момента, а именно с 1953 года, начинается третий этап развития генетики – эпоха синтетической генетики. Обычно это время называют периодом молекулярной генетики.

Третий этап , который начался с построения модели ДНК, продолжился открытием генетического кода в 1964 году. Этот период характеризуется многочисленными работами по расшифровке структуры геномов. Так в конце 20-го века появились сведения о полной расшифровке генома мухи дрозофилы, ученые составили полную карту арабидопсиса или горчицы малой, расшифрован геном человека.

Расшифровка только отдельных участков ДНК уже позволяет ученым получать трансгенные растения, т.е. растения с внедренными генами от других организмов. Такими растениями, по некоторым данным, засеяна площадь, равная Великобритании. Это в основном кукуруза, картофель, соя. В наши дни генетика, разбившись на множество комплексных направлений. Достаточно отметить достижения генетической инженерии по получению соматических и трансгенных гибридов, создание первой карты генома человека (Франция, 1992; США, 2000), получение клонированной овцы (Шотландия, 1997), клонированных поросят (США, 2000) и др.

Начало 21 века названо постгеномным периодом и, видимо, будет ознаменован новыми открытиями в области генетики, связанными с клонированием живых существ, созданием новых организмов на основании механизмов генной инженерии.

Накопленные до настоящего времени методы позволяют намного быстрее расшифровывать геномы сложных организмов, а также внедрять в них новых гены.

Основные открытия в области генетики:

1864 – Основные законы генетики (Г.Мендель)

1900 – Переоткрыты законы Г. Менделя (Г.де Фриз, К. Корренс, Э. Чермак)

1900–1903 – Мутационная теория (Г.де Фриз)

1910 – Хромосомная теория наследственности (Т. Морган, Т. Бовери, У. Сэттон)

1925–1938 – «один ген – один белок» (Дж. Билл, Э.. Тэйтум)

1929 – делимость гена (А.С. Серебров, Н.П. Дубинин)

1925 – искусственные мутации (Г.А. Надсон, Г.С. Филиппов)

1944 – ДНК – носитель наследственной информации (О. Эйвери, К. МакЛеод)

1953 – структурная модель ДНК (Дж. Уотсон, Ф. Крик)

1961 – генетический код (М. Ниренберг, Р. Холли, Г. Хорана)

1961 – оперонный принцип организации гена и регуляция генной активности у бактерий (Ф.Жакоба, Ж.Моно)

1959 – синтез гена (Г. Хорана )

1974–1975 – методы генной инженерии (К. Маррей, Н. Маррей, У. Бентон, Р. Дэйвис,Е. Саузен, М. Гранштэйн, Д. Хогнес)

1978–2000 – расшифровка геномов (Ф. Блатнер, Р. Клейтон, М. Адамс и др)

Методы генетики

ГИБРИДОЛОГИЧЕСКИЙ – п роизводится анализ закономерностей наследования отдельных признаков и свойств организмов при половом размножении, а также анализ изменчивости генов и их комбинаторики (разработан Г. Менделем).

ЦИТОЛОГИЧЕСКИЙ - с помощью оптического и электронного микроскопов изучаются материальные основы наследственности на клеточном и субклеточном уровнях (хромосомы, ДНК).

ЦИТОГЕНЕТИЧЕСКИЙ – с интез гибридологического и цитологического методов обеспечивает изучение кариотипа, изменений в строении и количестве хромосом.

ПОПУЛЯЦИОННО-СТАТИСТИЧЕСКИЙ – о сновывается на определении частоты встречаемости различных генов в популяции, что позволяет вычислить количество гетерозиготных организмов и прогнозировать, таким образом, количество особей с патологическим (мутантным) проявлением действия гена.

БИОХИМИЧЕСКИЙ– изучаются нарушения обмена веществ (белков, жиров, углеводов, минеральных веществ), возникающих в результате генных мутаций.

МАТЕМАТИЧЕСКИЙ – п роизводится количественный учет наследования признаков.

ГЕНЕАЛОГИЧЕСКИЙ – Выражается в составлении родословных. Позволяет установить тип и характер наследования признаков.

ОНТОГЕНЕТИЧЕСКИЙ – Позволяет проследить действие генов в процессе индивидуального развития; в сочетании с биохимическим методом позволяет установить присутствие рецессивных генов в гетерозиготном состоянии по фенотипу.

Селекция -это наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор . Теоретической основой селекции является генетика. Развитие селекции должно быть основано на законах генетики как науки о наследственности и изменчивости, поскольку свойства живых организмов определяются их генотипом и подвержены наследственной и модификационной изменчивости. Именно генетика прокладывает пути эффективного управления наследственностью и изменчивостью организмов. Вместе с тем селекция опирается и на достижения других наук:

  • систематики и географии растений и животных,
  • цитологии,
  • эмбриологии,
  • биологии индивидуального развития,
  • молекулярной биологии,
  • физиологии и биохимии.

Бурное развитие этих направлений естествознания открывает совершенно новые перспективы. Уже на сегодняшний день генетика вышла на уровень целенаправленного конструирования организмов с нужными признаками и свойствами. Генетике принадлежит определяющая роль в решении практически всех селекционных задач. Она помогает рационально, на основе законов наследственности и изменчивости, планировать селекционный процесс с учетом особенностей наследования каждого конкретного признака.

Для успешного решения задач, стоящих перед селекцией, академик Н.И. Вавилов особо выделял значение:

  • изучения сортового, видового и родового разнообразия культур;
  • изучения наследственной изменчивости;
  • влияния среды на развитие интересующих селекционера признаков;
  • знаний закономерностей наследования признаков при гибридизации;
  • особенностей селекционного процесса для само- или перекрестноопылителей;
  • стратегии искусственного отбора.

Породы, сорта, штаммы - искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями:

  • продуктивностью,
  • морфологическими,
  • физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород. Селекционная работа начинается с подбора исходного материала, в качестве которого могут быть использованы культурные и дикие формы растений.

В современной селекции применяют следующие основные виды и способы получения исходного материала.

Естественные популяции. К этому виду исходного материала относятся дикорастущие формы, местные сорта культурных растений, популяции и образцы, представленные в мировой коллекции сельскохозяйственных растений ВИР.

Гибридные популяции, создаваемые в результате скрещивания сортов и форм в пределах одного вида (внутривидовые) и получаемые в результате скрещивания разных видов и родов растений (межвидовые и межродовые).

Самоопыленные линии (инцухт-линии) . У перекрестноопыляющихся растений важный источник исходного материала - самоопыленные линии, получаемые путем многократного принудительного самоопыления. Лучшие линии скрещивают между собой или с сортами, а полученные семена используют в течение одного года для выращивания гетерозисных гибридов. Гибриды, созданные на основе самоопыленных линий, в отличие от обычных гибридных сортов нужно ежегодно воспроизводить .

Искусственные мутации и полиплоидные формы . Этот вид исходного материала получают путем воздействия на растения различными видами радиации, температурой, химическими веществами и другими мутагенными средствами.

Во Всесоюзном институте растениеводства Н.И. Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара, которая в настоящее время пополняется и является основой для работ по селекции любой культуры. Наиболее богатыми по количеству культур являются древние центры цивилизации. Именно там наиболее ранняя культура земледелия, более длительное время проводятся искусственный отбор и селекция растений.

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.

Массовый отбор применяют при селекции перекрестноопыляемых растений (рожь, кукуруза, подсолнечник). В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

Индивидуальный отбор применяют при селекции самоопыляемых растений (пшеница, ячмень, горох). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией . Чистая линия - потомство одной гомозиготной самоопыленной особи. Так как постоянно происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает.

Естественный отбор. Этот вид отбора играет в селекции определяющую роль. На любое растение в течение его жизни действует комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному и водному режиму.

Гибридизация - процесс образования или получения гибридов, в основе которого лежит объединение генетического материала разных клеток в одной клетке. Может осуществляться в пределах одного вида (внутривидовая гибридизация) и между разными систематическими группами (отдалённая гибридизация, при которой происходит объединение разных геномов). Для первого поколения гибридов часто характерен гетерозис, выражающийся в лучшей приспособляемости, большей плодовитости и жизнеспособности организмов. При отдалённой гибридизации гибриды часто стерильны. В селекции растений наиболее распространён метод гибридизации форм или сортов в пределах одного вида. С помощью этого метода создано большинство современных сортов сельскохозяйственных растений.

Отдалённая гибридизация - более сложный и трудоёмкий метод получения гибридов. Основное препятствие получения отдалённых гибридов - несовместимость половых клеток скрещиваемых пар и стерильность гибридов первого и последующих поколений. Отдаленная гибридизация - это скрещивание растений, относящихся к разным видам. Отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не могут конъюгировать) и, следовательно не образуются гаметы.

Гетерозис («гибридная сила») - явление, при котором гибриды по ряду признаков и свойств превосходят родительские формы. Гетерозис характерен для гибридов первого поколения, первое гибридное поколение дает прибавку урожая до 30%. В последующих поколениях его эффект ослабляется и исчезает. Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии, тем больше эффект гетерозиса.

AAbbCCdd

aaBBccDD

AaBbCcDd

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования. Сверхдоминирование - вид взаимодействия аллельных генов, при котором гетерозиготы превосходят по своим характеристикам (по массе и продуктивности) соответствующие гомозиготы. Начиная со второго поколения гетерозис затухает, так как часть генов переходит в гомозиготное состояние.

Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Например, при селекции пшеницы поступают следующим образом. У цветков растения одного сорта удаляются пыльники, рядом в сосуде с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

Метод получения полиплоидов. Полиплоидные растения обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы. Виды, у которых кратно умножен один и тот же геном, называются автополиплоидами . Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становятся тетраплоидными.

Использование соматических мутаций. Соматические мутации применяются для селекции вегетативно размножающихся растений. Это использовал в своей работе еще И.В. Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

Экспериментальный мутагенез. Основан на открытии воздействия различных излучений для получения мутаций и на использовании химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций. Сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Методы селекции растений, предложенные И.В. Мичуриным. С помощью метода ментора И.В. Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества, или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В. Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах повышается их морозостойкость.

Селекция (от лат. — выбор, отбор) — это наука о путях и методах создания новых и улучшения уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для практики признаками и свойствами.

Задачи селекции вытекают из ее определения — это выведение новых и совершенствование уже существующих сортов растений, пород животных и штаммов микроорганизмов. Сортом, породой и штаммом называют устойчивую группу (популяцию) живых организмов, искусственно созданную человеком и имеющую определенные наследственные особенности. Все особи внутри породы, сорта и штамма имеют сходные, наследственно закрепленные морфологические, физиолого-биохимические и хозяйственные признаки и свойства, а также однотипную реакцию на факторы внешней среды. Основными направлениями селекции являются:

    высокая урожайность сортов растений, плодовитость и продуктивность пород животных;

    качество продукции (например, вкус, внешний вид, лежкость плодов и овощей, химический состав зерна — содержание белка, клейковины, незаменимых аминокислот и т. д.);

    физиологические свойства (скороспелость, засухоустойчивость, зимостойкость, устойчивость к болезням, вредителям и неблагоприятным климатическим условиям);

    интенсивный путь развития (у растений — отзывчивость на удобрения, полив, а у животных — «оплата» корма и т. п.).

Цель данной работы - изучить селекцию и ее виды.

Задачи:

    рассмотреть теоретические основы селекции;

    изучить вопросы селекцию растений, животных и микроорганизмов.

1. Теоретические основы селекции

В последние годы особое значение приобретает селекция ряда насекомых и микроорганизмов, используемых с целью биологической борьбы с вредителями и возбудителями болезней культурных растений.

Селекция должна учитывать также и потребности рынка сбыта сельскохозяйственной продукции, удовлетворения конкретных отраслей промышленного производства. Например, для выпечки высококачественного хлеба с эластичным мякишем и хрустящей корочкой необходимы сильные (стекловидные) сорта мягкой пшеницы, с большим содержанием белка и упругой клейковины. Для изготовления высших сортов печенья нужны хорошие мучнистые сорта мягкой пшеницы, а макаронные изделия, рожки, вермишель, лапша, вырабатываются из твердой пшеницы.

Ярким примером селекции с учетом потребностей рынка служит пушное звероводство. При выращивании таких ценных зверьков, как норка, выдра, лиса, отбираются животные с генотипом, соответствующим постоянно меняющейся моде в отношении окраски и оттенков меха.

В целом развитие селекции должно быть основано на законах генетики как науки о наследственности и изменчивости, поскольку свойства живых организмов определяются их генотипом и подвержены наследственной и модификационной изменчивости.

Теоретической основой селекции является генетика. Именно генетика прокладывает пути эффективного управления наследственностью и изменчивостью организмов. Вместе с тем селекция опирается и на достижения других наук: систематики и географии растений и животных, цитологии, эмбриологии, биологии индивидуального развития, молекулярной биологии, физиологии и биохимии. Бурное развитие этих направлений естествознания открывает совершенно новые перспективы. Уже на сегодняшний день генетика вышла на уровень целенаправленного конструирования организмов с нужными признаками и свойствами.

Генетике принадлежит определяющая роль в решении практически всех селекционных задач. Она помогает рационально, на основе законов наследственности и изменчивости, планировать селекционный процесс с учетом особенностей наследования каждого конкретного признака. Достижения генетики, закон гомологических рядов наследственной изменчивости, применение тестов для ранней диагностики селекционной перспективности исходного материала, разработка разнообразных методов экспериментального мутагенеза и отдаленной гибридизации в сочетании с полиплоидизацией, поиск методов управления процессами рекомбинации и эффективного отбора наиболее ценных генотипов с нужным комплексом признаков и свойств дали возможность расширить источники исходного материала для селекции. Кроме того, широкое использование в последние годы методов биотехнологии, культуры клеток и тканей позволили значительно ускорить селекционный процесс и поставить его на качественно новую основу. Этот далеко не полный перечень вклада генетики в селекцию дает представление о том, что современная селекция немыслима без использования достижений генетики.

Успех работы селекционера в значительной мере зависит от правильности выбора исходного материала (видов, сортов, пород) для селекции, изучения его происхождения и эволюции, использования в селекционном процессе организмов с ценными признаками и свойствами. Поиск нужных форм ведется с учетом всего мирового генофонда в определенной последовательности. Прежде всего, используются местные формы с нужными признаками и свойствами, затем применяются методы интродукции и акклиматизации, т. е. привлекаются формы, произрастающие в других странах или в других климатических зонах и, наконец, методы экспериментального мутагенеза и генетической инженерии .

С целью изучения многообразия и географического распространения культурных растений Н. И. Вавилов с 1924 г. и до конца 30-х гг. организовал 180 экспедиций по самым труднодоступным и зачастую опасным районам земного шара. В результате этих экспедиций Н. И. Вавилов изучил мировые растительные ресурсы и установил, что наибольшее разнообразие форм вида сосредоточено в тех районах, где этот вид возник. Кроме того, была собрана уникальная, самая крупная в мире коллекция культурных растений (к 1940 г. коллекция включала 300 тыс. образцов), которые ежегодно размножаются в кол лекциях Всероссийского института растениеводства имени Н. И. Вавилова (ВИР) и широко используются селекционерами как исходный материал для создания новых сортов зерновых, плодовых, овощных, технических, лекарственных и других культур.

На основании изучения собранного материала Вавилов выделил 7 центров происхождения культурных растений (Приложение 1). Центры происхождения важнейших культурных растений связаны с древними очагами цивилизации и местом первичного возделывания и селекции растений. Подобные очаги одомашнивания (центры происхождения) выявлены и у домашних животных.

2. Значение селекции

Цели и задачи селекции как науки обусловлены уровнем агротехники и зоотехники, уровнем индустриализации растениеводства и животноводства. Например, в условиях дефицита пресной воды уже выведены сорта ячменя, которые дают удовлетворительные урожаи при орошении морской водой. Выведены породы кур, не снижающие продуктивности в условиях большой скученности животных на птицефабриках. Для России очень важно создание сортов, продуктивных в условиях мороза без снега при ясной погоде, поздних заморозков и т. д.

Одним из важнейших достижений человека на заре его становления и развития было создание постоянного и достаточно надежного источника продуктов питания путем одомашнивания диких животных и возделывания растений. Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У культурных форм растений и животных сильно развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека. Например, способность некоторых пород кур давать более 300 яиц в год лишена биологического смысла, поскольку такое количество яиц курица не сможет высиживать. Продуктивность всех культурных растения также значительно выше, чем у родственных диких видов, но вместе с тем они хуже адаптируются к постоянно меняющимся условиям среды и не имеют средств защиты от поедания (горьких или ядовитых веществ, шипов, колючек и т. п.). Поэтому в естественных условиях культурные, т. е. одомашненные формы существовать не могут.

Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости: и расширяло его спектр. При этом одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более смирный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у растений и животных определенных качеств, удовлетворяющих человека. Опыт многих поколений людей позволил создать методы и правила отбора и сформировать селекцию как науку.

Процесс одомашнивания новых видов растений и животных для удовлетворения потребностей человека продолжается и в наше время. Например, для получения модной и высококачественной пушнины в нынешнем столетии создана новая отрасль животноводства — пушное звероводство.

Генетика - наука, которая изучает два свойства живых организмов, - наследственность и изменчивость. Достижения генетики имеют большое значение для медицины, сельского хозяйства и биологии.

Наследственность

Под наследственностью понимают свойство организмов передавать потомству свои признаки и свойства. Именно благодаря наследственности во многих поколениях сохраняется та или иная порода и вид животных, и сорт растений.

Изменчивость

Изменчивость - свойство организмов приобретать новые признаки, отличные от родительских. Если эти признаки закрепляются в последующих поколениях, то говорят о наследственной изменчивости.

Рис. 1. Модификационная изменчивость.

Изменчивость определяет разнообразие свойств и внешних данных в пределах одного вида.

Материальным носителем информации о свойствах клетки является ДНК. Она входит в состав хромосом - структур клеточного ядра, хранящих наследственную информацию.

ТОП-4 статьи которые читают вместе с этой

Согласно современным взглядам на наследственность, различия между видами и организмами внутри вида определяются различиями белков, из которых построены организмы.

Информация о структуре конкретного белка содержится в гене. Ген представляет собой участок молекулы ДНК.

Рис. 2. Ген.

С генов считывается информация, которая затем реализуется при создании белковых молекул.

Генотип

Для каждого вида организмов характерно определённое количество и форма хромосом - его генотип. Например, у человека в генотипе 23 пары хромосом. Половина хромосом получена от отца, а половина от матери.

Рис. 3. Хромосомные наборы.

Половые клетки содержат половинчатый, или гаплоидный набор хромосом (n), а соматические - диплоидный (2n), или двойной.

Фенотип

Признак, закодированный в гене, может проявиться или не проявиться, что зависит от взаимодействия генов и особенностей условий внешней среды. Наиболее распространённым типом взаимодействия между генами является подавление действия одного гена другим. Все проявившиеся признаки образуют фенотип организма.

Селекция

Тесно связана с генетикой селекция. Она занимается созданием новых и целенаправленным изменением уже имеющихся сортов растений и пород животных.

Основами генетики и селекции являются знания о закономерностях наследования признаков и их проявлении в фенотипе.

Многие высокоурожайные сорта культурных растений, созданы селекционерами путём кратного увеличения числа хромосом (3n, 4n и т. д.). Такие культуры называют полиплоидами.

Что мы узнали?

Генетика изучает два важных свойства живых организмов: способность передавать свойства из поколения в поколение; способность приобретать новые качества. Отдельный признак организма - это белок, информация о строении которого зашифрована в гене - участке молекулы ДНК. Генетические основы генетики являются теоретической базой для разносторонних биологических и медицинских исследований и повышения продуктивности сельского хозяйства.

Случайные статьи

Вверх